K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2021

https://hoc24.vn/cau-hoi/giai-phuong-trinh-nghiem-nguyenx2y2xy-x-2-yx-1.3965524015503

help me please

 

=>(x+y)(x^2y^2+1)=xy+2

=>\(x+y=\dfrac{xy+2}{x^2y^2+1}\)

=>xy+2 chia hết cho x^2y^2+1

=>x^2y^2-4 chia hết cho x^2y^2+1

=>5 chia hết cho x^2y^2+1

=>x^2y^2+1=1 hoặc x^2y^2+1=5

=>\(xy\in\left\{-2;0;2\right\}\)

xy=0 mà x+y=2 nên \(\left(x,y\right)\in\left\{\left(0;2\right);\left(2;0\right)\right\}\)

xy=-2 

=>x+y=0

=>y=-x

=>x^2=2(loại)

xy=2 

=>x+y=4/5(loại)

=>\(\left(x,y\right)\in\left\{\left(0;2\right);\left(2;0\right)\right\}\)

5 tháng 1 2018

pt <=> x^2+x+1-(2xy+y) = 0

<=> (x^2+1/2.x)+(1/2.x+1/4)-y.(2x+1)+3/4=0

<=> 1/2.x.(2x+1)+1/4.(2x+1)-y.(2x+1) = -3/4

<=> (2x+1).(1/2.x+1/4-y) = -3/4

<=> (2x+1).(2x+1-4y) = -3

Đến đó bạn tự giải nha ( dùng ước bội )

Tk mk nha

5 tháng 1 2018

sorry tớ mới lơp 7

26 tháng 6 2023

x+2 nhe

 

26 tháng 6 2023

ta có đc : 

x2-4-y=y2-4

<=> x2=y2+y

<=> x2=y(y+1)

vì VP là tích của 2 số nguyên liên tiếp và VT là bình phương một số và x và y nguyên => x2=y(y+1)=0 

<=> y=0 hoặc y=-1

vậy ta có cặp no(x;y):(0;0) ; (0;-1)

2 tháng 2 2018

bạn ơi....đề đúng chưa vậy? bạn thử xem lại đề ik

NV
2 tháng 4 2023

\(x+\dfrac{1}{x}+y+\dfrac{1}{y}=4\)

\(\Rightarrow x+y+\dfrac{x+y}{xy}=4\)

\(\Rightarrow\left(x+y\right)\left(xy+1\right)=4xy\)

Đặt \(\left\{{}\begin{matrix}x+y=u\\xy=v\end{matrix}\right.\) với \(u;v\in Z\) và \(u^2\ge4v\)\(v\ne0\)

\(\Rightarrow u\left(v+1\right)=4v\)

\(\Rightarrow u=\dfrac{4v}{v+1}=4-\dfrac{4}{v+1}\)

\(\Rightarrow v+1=Ư\left(4\right)\Rightarrow v+1=\left\{-4;-2;-1;1;2;4\right\}\)

\(\Rightarrow v=\left\{-5;-3;-2;1;3\right\}\)

\(\Rightarrow u=\left\{5;6;8;2;3\right\}\)

Loại cặp \(\left(u;v\right)=\left(3;3\right)\) không thỏa mãn \(u^2\ge4v\)

Ta được \(\left(u;v\right)=\left(5;-5\right);\left(6;-3\right);\left(8;-2\right);\left(2;1\right)\)

TH1: \(\left\{{}\begin{matrix}x+y=5\\xy=-5\end{matrix}\right.\) không tồn tại x;y nguyên thỏa mãn

TH2: \(\left\{{}\begin{matrix}x+y=6\\xy=-3\end{matrix}\right.\) ko tồn tại x;y nguyên thỏa mãn

TH3: \(\left\{{}\begin{matrix}x+y=8\\xy=-2\end{matrix}\right.\) không tồn tại x;y nguyên thỏa mãn

TH4: \(\left\{{}\begin{matrix}x+y=2\\xy=1\end{matrix}\right.\) \(\Rightarrow x=y=1\)

Vậy pt có đúng 1 cặp nghiệm nguyên \(\left(x;y\right)=\left(1;1\right)\)