K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2021

Ta có \(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)

\(=\left(x-y\right)^3+\left(y-x+x-z\right)^3+\left(z-x\right)^3\\ =\left(x-y\right)^3+\left(y-x\right)^3+3\left(y-x\right)\left(x-z\right)\left(y-x+x-z\right)+\left(x-z\right)^3+\left(z-x\right)^3\\ =\left(x-y\right)^3-\left(x-y\right)^3+\left(x-z\right)^3-\left(x-z\right)^3+3\left(y-x\right)\left(x-z\right)\left(y-z\right)\\ =3\left(y-x\right)\left(x-z\right)\left(y-z\right)\)

Thay vào pt

\(\Leftrightarrow\left(y-x\right)\left(x-z\right)\left(y-z\right)=10\)

Dễ thấy \(y-z\) là tổng của \(y-x;x-z\)

Mà \(Ư\left(10\right)=\left\{-10;-5;-2;-1;1;2;5;10\right\}\) và ko có số nào là tổng 2 số còn lại có tích bằng 10

Vậy pt vô nghiệm

 

 

10 tháng 10 2021

\(3\left(y-x\right)\left(x-z\right)\left(y-z\right)=30\) chứ

11 tháng 7 2016
  • x = 0 thì PT:  0! + y! = y! <=> 1 = 0 vô lý. nên x và y phải khác 0.
  • Nếu x = y thì PT <=> 2*x! = (2x)! => (x+1)*(x+2)*...(2x) = 2 => x =1 => y = 1.
  • Với x;y khác nhau và khác 0; khác 1 ; x;y có vai trò tương đương nên giả sử \(1< x< y\)thì:

\(x!+y!< 2\times y!\le\left(y+1\right)\times y!=\left(y+1\right)!< \left(x+y\right)!\)=> PT vô nghiệm.

Kết luận: PT có nghiệm nguyên duy nhất : x = 1; y = 1

11 tháng 7 2016

Nếu x = 0 thì PT : 0! + y! = y! \(\Leftrightarrow\)1 = 0 . Điều này vô lý nên x và y phải khác 0 .

\(.\)Nếu x = y thì PT  \(\Leftrightarrow\)\(2.x!\)= (2x)! \(\Rightarrow\)( x + 1 ) . ( x + 2 ) . ..... . ( 2x ) = 2 \(\Rightarrow\)x = 1 \(\Rightarrow\)y = 1 

\(.\)Nếu x và y khác nhau và khác 0 ; 1 ; x và y có vai trò tương đương nên giả sử \(1< x< y\)thì : 

\(x!+y!< 2.y!\le\left(y+1\right).y!=\left(y+1\right)!< \left(x+y\right)!\Rightarrow\)PT vô nghiệm . 

Kết luận : PT có nghiệm nguyên duy nhất : \(x=1;y=1\)

7 tháng 5 2022

(1+x2)(1+y2)+4xy+2(x+y)(1+xy)=25(1+x2)(1+y2)+4xy+2(x+y)(1+xy)=25

x2+2xy+y2+x2y2+2xy.1+1+2(x+y)(1+xy)−25=0x2+2xy+y2+x2y2+2xy.1+1+2(x+y)(1+xy)−25=0

(x+y)2+2(x+y)(1+xy)+(1+xy)2−25=0(x+y)2+2(x+y)(1+xy)+(1+xy)2−25=0

(x+y+1+xy+5)(x+y+1+xy−5)=0(x+y+1+xy+5)(x+y+1+xy−5)=0[x+y+xy=−6x+y+xy=4[x+y+xy=−6x+y+xy=4

Nếu x+y+xy=-6→(x+1)(y+1)=-5(vì x,yϵ z nên x+1,y+1ϵ z)

ta có bảng:

x+1                   1                5                -1                  -5

y+1                 -5                -1                5                     1

x                       0                 4                 -2                    -6

y                     -6                  -2                 4                  0

→(x,y)ϵ{(0;−6),(4;−2)...}

 

\(\left(1+x^2\right)\left(1+y^2+4xy\right)+2\left(x+y\right)\left(1+xy\right)=25\)

\(\Leftrightarrow\) \(x^2+2xy+y^2+x^2y^2+2xy.1+1+2\left(x+y\right)\left(1+xy\right)-25=0\)

\(\Leftrightarrow\) \(\left(x+y\right)^2+2\left(x+y\right)\left(1+xy\right)+\left(1+xy\right)^2-25=0\)

\(\Leftrightarrow\) \(\left(x+y+1+xy+5\right)\left(x+y+1+xy-5\right)=0\) \(\Rightarrow\) \(\left\{{}\begin{matrix}x+y+xy=-6\\x+y+xy=4\end{matrix}\right.\)

nếu \(x+y+xy=-6\Rightarrow\left(x+1\right)\left(y+1\right)=-5\) 

                                                                ( vì \(x,y\in Z\) nên \(x+1;y+1\in Z\) )

ta lập bảng :

       \(x+1\)           \(1\)         \(5\)         \(-1\)         \(-5\)
       \(y+1\)         \(-5\)          \(-1\)          \(5\)          \(1\) 
          \(x\)            \(0\)            \(4\)         \(-2\)          \(-6\) 
           \(y\)         \(-6\)          \(-2\)           \(4\)           \(0\)

\(\Rightarrow\) \(x;y\in\left\{\left(0,6\right);\left(4,-2\right);\left(-2,4\right);\left(-6,0\right)\right\}\)