K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2021
  1. Tập xác định của phương trình

  2. Rút gọn thừa số chung

  3. Đơn giản biểu thức

  4. Giải phương trình

  5. Nghiệm được xác định dưới dạng hàm ẩn

10 tháng 10 2021

Ta có \(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)

\(=\left(x-y\right)^3+\left(y-x+x-z\right)^3+\left(z-x\right)^3\\ =\left(x-y\right)^3+\left(y-x\right)^3+3\left(y-x\right)\left(x-z\right)\left(y-x+x-z\right)+\left(x-z\right)^3+\left(z-x\right)^3\\ =\left(x-y\right)^3-\left(x-y\right)^3+\left(x-z\right)^3-\left(x-z\right)^3+3\left(y-x\right)\left(x-z\right)\left(y-z\right)\\ =3\left(y-x\right)\left(x-z\right)\left(y-z\right)\)

Thay vào pt

\(\Leftrightarrow\left(y-x\right)\left(x-z\right)\left(y-z\right)=10\)

Dễ thấy \(y-z\) là tổng của \(y-x;x-z\)

Mà \(Ư\left(10\right)=\left\{-10;-5;-2;-1;1;2;5;10\right\}\) và ko có số nào là tổng 2 số còn lại có tích bằng 10

Vậy pt vô nghiệm

 

 

10 tháng 10 2021

\(3\left(y-x\right)\left(x-z\right)\left(y-z\right)=30\) chứ

7 tháng 5 2022

(1+x2)(1+y2)+4xy+2(x+y)(1+xy)=25(1+x2)(1+y2)+4xy+2(x+y)(1+xy)=25

x2+2xy+y2+x2y2+2xy.1+1+2(x+y)(1+xy)−25=0x2+2xy+y2+x2y2+2xy.1+1+2(x+y)(1+xy)−25=0

(x+y)2+2(x+y)(1+xy)+(1+xy)2−25=0(x+y)2+2(x+y)(1+xy)+(1+xy)2−25=0

(x+y+1+xy+5)(x+y+1+xy−5)=0(x+y+1+xy+5)(x+y+1+xy−5)=0[x+y+xy=−6x+y+xy=4[x+y+xy=−6x+y+xy=4

Nếu x+y+xy=-6→(x+1)(y+1)=-5(vì x,yϵ z nên x+1,y+1ϵ z)

ta có bảng:

x+1                   1                5                -1                  -5

y+1                 -5                -1                5                     1

x                       0                 4                 -2                    -6

y                     -6                  -2                 4                  0

→(x,y)ϵ{(0;−6),(4;−2)...}

 

\(\left(1+x^2\right)\left(1+y^2+4xy\right)+2\left(x+y\right)\left(1+xy\right)=25\)

\(\Leftrightarrow\) \(x^2+2xy+y^2+x^2y^2+2xy.1+1+2\left(x+y\right)\left(1+xy\right)-25=0\)

\(\Leftrightarrow\) \(\left(x+y\right)^2+2\left(x+y\right)\left(1+xy\right)+\left(1+xy\right)^2-25=0\)

\(\Leftrightarrow\) \(\left(x+y+1+xy+5\right)\left(x+y+1+xy-5\right)=0\) \(\Rightarrow\) \(\left\{{}\begin{matrix}x+y+xy=-6\\x+y+xy=4\end{matrix}\right.\)

nếu \(x+y+xy=-6\Rightarrow\left(x+1\right)\left(y+1\right)=-5\) 

                                                                ( vì \(x,y\in Z\) nên \(x+1;y+1\in Z\) )

ta lập bảng :

       \(x+1\)           \(1\)         \(5\)         \(-1\)         \(-5\)
       \(y+1\)         \(-5\)          \(-1\)          \(5\)          \(1\) 
          \(x\)            \(0\)            \(4\)         \(-2\)          \(-6\) 
           \(y\)         \(-6\)          \(-2\)           \(4\)           \(0\)

\(\Rightarrow\) \(x;y\in\left\{\left(0,6\right);\left(4,-2\right);\left(-2,4\right);\left(-6,0\right)\right\}\)

10 tháng 11 2018

\(\left(1+x\right)\left(y+z\right)=xyz+2\)

\(\Leftrightarrow\)\(xy+xz+y+z=xyz+2\)

\(\Leftrightarrow\)\(xyz-xy-xz+x=y+z-2+x\)

\(\Leftrightarrow\)\(x\left(yz-y-z+1\right)=x+y+z-2\)

\(\Leftrightarrow\)\(x\left(y-1\right)\left(z-1\right)=x+\left(y-1\right)+\left(z-1\right)\)

Đặt \(a=x;b=y-1;c=z-1\) pt \(\Leftrightarrow\)\(abc=a+b+c\)

Ta có : \(a\ge1;b\ge0;c\ge0\) ( do \(x,y,z\ge1\) ) 

Giả sử \(b=0\) pt \(\Leftrightarrow\)\(a+c=0\) ( vô lí vì \(a+c\ge1\) ) 

Tương tự, giả sử \(c=0\) pt \(\Leftrightarrow\)\(a+b=0\) ( vô lí vì \(a+b\ge1\) ) 

\(\Rightarrow\)\(a,b,c\ge1\) và \(abc=a+b+c\)

Đến đây giả sử \(a\ge b\ge c\) đc r vì a, b, c có vai trò như nhau 

Giải r nhưng quên link, có j e ib gửi link khác cho :)) 

Chúc a học tốt ~ 

10 tháng 11 2018

cảm ơn e nhé, alibaba nguyễn cx giúp anh r

29 tháng 8 2023

Ta có \(VP=y\left(y+3\right)\left(y+1\right)\left(y+2\right)\)

\(VP=\left(y^2+3y\right)\left(y^2+3y+2\right)\)

\(VP=\left(y^2+3y+1\right)^2-1\)

\(VP=t^2-1\) (với \(t=y^2+3y+1\ge0\))

pt đã cho trở thành:

\(x^2=t^2-1\)

\(\Leftrightarrow t^2-x^2=1\)

\(\Leftrightarrow\left(t-x\right)\left(t+x\right)=1\)

Ta xét các TH:

\(t-x\) 1 -1
\(t+x\) 1 -1
\(t\) 1 -1
\(x\) 0

0

Xét TH \(\left(t,x\right)=\left(1,0\right)\) thì \(y^2+3y+1=1\) \(\Leftrightarrow\left[{}\begin{matrix}y=0\\y=-3\end{matrix}\right.\) (thử lại thỏa)

Xét TH \(\left(t,x\right)=\left(-1;0\right)\) thì \(y^2+3y+1=-1\Leftrightarrow\left[{}\begin{matrix}y=-1\\y=-2\end{matrix}\right.\) (thử lại thỏa).

 Vậy các bộ số nguyên (x; y) thỏa mãn bài toán là \(\left(0;y\right)\) với \(y\in\left\{-1;-2;-3;-4\right\}\)

 

31 tháng 10 2021

TK: Tìm x,y,z nguyên dương thỏa mãn xyz=2(x+y+z) - Hoc24

26 tháng 8 2020

a) \(\left(xy+1\right)^2=25\)

\(\Leftrightarrow\orbr{\begin{cases}xy+1=5\\xy+1=-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}xy=4\\xy=-6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{4}{y}\\x=-\frac{6}{y}\end{cases}}\)

+ Nếu: \(x=\frac{4}{y}\Leftrightarrow\left(\frac{4}{y}+y\right)^2=49\)

\(\Leftrightarrow y^2+8+\frac{16}{y^2}=49\)

\(\Leftrightarrow\frac{y^4+16}{y^2}=41\)

\(\Leftrightarrow y^4-41y^2+16=0\) => y vô tỉ (loại)

+ Nếu: \(x=-\frac{6}{y}\Rightarrow\left(y-\frac{6}{y}\right)^2=49\)

\(\Leftrightarrow y^2+\frac{36}{y^2}=49+12\)

\(\Leftrightarrow y^4-61y^2+36=0\) => y vô tỉ (loại)

=> hpt vô nghiệm

b) tương tự