Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2xy+x+y=21\Leftrightarrow4xy+2x+2y=42\Leftrightarrow4xy+2x+2y+1=43\Leftrightarrow2x\left(2y+1\right)+\left(2y+1\right)=43\Leftrightarrow\left(2x+1\right)\left(2y+1\right)=43mà:x,y\in Z\Rightarrow2x+1,2y+1le\Rightarrow2x+1\inƯ\left(43\right)\Rightarrow2x+1\in\left\{-1;1;-43;43\right\}\)
\(+,2x+1=1\Rightarrow\left\{{}\begin{matrix}x=0\\2y+1=43\end{matrix}\right.\Rightarrow x=0;y=21\)
\(+,2x+1=43\Rightarrow\left\{{}\begin{matrix}x=21\\2y+1=1\end{matrix}\right.\Rightarrow x=21;y=0\)
\(+,2x+1=-1\Rightarrow\left\{{}\begin{matrix}x=-1\\2y+1=-43\end{matrix}\right.\Rightarrow x=-1;y=-22\)
\(+,2x+1=-43\Rightarrow\left\{{}\begin{matrix}x=-22\\2y+1=-1\end{matrix}\right.\Rightarrow x=-22;y=-1\)
\(5x-3y=2xy-11\Leftrightarrow10x-6y=4xy-22\Leftrightarrow4xy-10x+6y-22=0\Leftrightarrow2x\left(2y-5\right)+6y-15=7\Leftrightarrow2x\left(2y-5\right)+3\left(2y-5\right)=7\Leftrightarrow\left(2x+3\right)\left(2y-5\right)=7\Rightarrow2x+3\inƯ\left(7\right)\Leftrightarrow mà:x\in Z^+\Rightarrow2x+3\ge5\Rightarrow2x+3=7;2y-5=1\Leftrightarrow x=2;y=3\left(thoaman\right)\) \(Vậy:x=2;y=3\)
\(x^2+5x-6=x^2-6x+x-6=x\left(x-6\right)+\left(x-6\right)=\left(x+1\right)\left(x-6\right)\)
\(5x^2+5xy-x-y=5x\left(x+y\right)-\left(x+y\right)=\left(5x-1\right)\left(x+y\right)\)
\(7x-6x^2-2=-6x^2+7x-2=-6\left(x^2-\frac{7}{6}x+\frac{1}{3}\right)=-6\left(x^2-\frac{7}{6}x+\frac{49}{144}-\frac{1}{144}\right)=-6\left[\left(x-\frac{7}{12}\right)^2-\frac{1}{144}\right]\)
1) x2-x+6x-6 = x(x-1)+6(x-1)=(x+6)(x-1)
2) 5x(x+y)-(x+y) =(5x-1)(x+y)
3) -6x2+7x-2 = -6x2+3x+4x-2= -6x(x-\(\frac{1}{2}\)) +4(x-\(\frac{1}{2}\)) =(-3x+2)(2x-1)
a) \(x^2+5x-6\)
\(=x^2-2x+3x-6\\ =\left(x^2-2x\right)+\left(3x-6\right)\\ =x\left(x-2\right)+3\left(x-2\right)\\ =\left(x-2\right)\left(x+3\right)\)
b) \(5x^2+5xy-x-y\)
\(=\left(5x^2+5xy\right)-\left(x+y\right)\\ =5x\left(x+y\right)-\left(x+y\right)\\ =\left(x+y\right)\left(5x+1\right)\)
c)\(7x-6x^2-2\)
\(=3x+4x-6x^2-2\\ =\left(3x-6x^2\right)+\left(4x-2\right)\\ =3x\left(1-2x\right)+2\left(2x-1\right)\\ =3x\left(1-2x\right)-2\left(1-2x\right)\\ =\left(1-2x\right)\left(3x-2\right)\)
10, \(5x^3+11y^3=-13z^3\)
\(\Rightarrow5x^3+11y^3⋮13\)
\(\Rightarrow x,y⋮13\)
\(\Rightarrow z⋮13\)
Đến đây dùng lùi vô hạn nhé
4. Nếu em đã tìm hiểu về giai thừa thì ở bài 4, chúng ta có thêm điều kiện: x, y, z là số tự nhiên và x,y < z
+) TH1: x = 0; y = 0 => z = 2 (tm)
+) TH2: x = 0; y = 1=> z = 2(tm)
+) Th3: x= 1; y = 0 => z = 2(tm)
+) TH4: x = 1; y= 1 => z = 2 (tm)
+) TH5: y > 1
với \(x\le y\)
Khi đó: x! = 1.2.3...x;
y! = 1.2.3...x.(x+1)...y
z! = 1.2.3....x.(x+1)...y(y+1)...z
Từ (4) <=> 1 + (x+1).(x+2)...y = (x + 1)....y(y+1)...z
<=> ( x+1)(x+2)...y[(y+1)...z - 1 ] = 1
<=> \(\hept{\begin{cases}\left(x+1\right)\left(x+2\right)...y=1\\\left(y+1\right)...z-1=1\end{cases}}\)vô lí vì y > 1
Với \(y\le x\)cũng làm tương tự và loại'
Vậy:...
a, mình nghĩ đề là cm đẳng thức nhé
\(VT=\left(5x^4-3x^3+x^2\right):3x^2=\frac{5x^4}{3x^2}-\frac{3x^3}{3x^2}+\frac{x^2}{3x^2}=\frac{5}{3}x^2-x+\frac{1}{3}=VP\)
Vậy ta có đpcm
b, \(VT=\left(5xy^2+9xy-x^2y^2\right):\left(-xy\right)=\frac{5xy^2}{-xy}+\frac{9xy}{-xy}-\frac{x^2y^2}{-xy}\)
\(=-5y-9+xy=VP\)
Vậy ta có đpcm
c, \(VT=\left(x^3y^3-x^2y^3-x^3y^2\right):x^2y^2=\frac{x^3y^3}{x^2y^2}-\frac{x^2y^3}{x^2y^2}-\frac{x^3y^2}{x^2y^2}=xy-y-x=VP\)
Vậy ta có đpcm
\(\Leftrightarrow\left(6x^2+2xy-8x\right)+\left(3xy+y^2-4y\right)+\left(3x+y-4\right)=1\)
\(\Leftrightarrow2x\left(3x+y-4\right)+y\left(3x+y-4\right)+\left(3x+y-4\right)=1\)
\(\Leftrightarrow\left(3x+y-4\right)\left(2x+y+1\right)=1\)
Pt ước số đơn giản, em có thể tự lập bảng giá trị