Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(2xy-x+y=3\)\(\Leftrightarrow4xy-2x+2y=6\Leftrightarrow2x\left(2y-1\right)+\left(2y-1\right)=5\)
\(\Leftrightarrow\left(2y-1\right)\left(2x+1\right)=5\)
Ta lập bảng giá trị:
\(2y-1\) | 1 | 5 | -1 | -5 |
\(2x+1\) | 5 | 1 | -5 | -1 |
\(x\) | 2 | 0 | -3 | -1 |
\(y\) | 1 | 3 | 0 | -2 |
Vậy phương trình đã cho có cách nghiệm nguyên (2;1);(0;3);(-3;0) và (-1;-2)
2xy-x+y=3
2(2xy-x+y)=2.3
4xy-2x+2y=6
2x(2y-1)-2y=6
2x(2y-1)-2y+1=6+1
2x(2y-1)-(2y-1)=7
(2x-1)(2y-1)=7
\(PT\Leftrightarrow y\left(x^2-2x-1\right)=x^2+2x-1\).
Từ đó \(x^2-2x-1\vdots x^2+2x-1\)
\(\Leftrightarrow4x⋮x^2+2x-1\) (1)
\(\Rightarrow4\left(x^2+2x-1\right)-4x^2⋮x^2+2x-1\)
\(\Leftrightarrow8x-4⋮x^2+2x-1\) (2)
Từ (1), (2) suy ra \(8⋮x^2+2x-1\).
Đến đây bạn xét TH.
Giải pt nghiệm nguyên
a)3x^2 + 4y^2=6x+13
b)5x^2 + 2xy +y^2 -4x-40=0
c)x^2+y^2=x+y+8
d)x^2-y^2-4x-4y=92
\(2xy+x+y=21\Leftrightarrow4xy+2x+2y=42\Leftrightarrow4xy+2x+2y+1=43\Leftrightarrow2x\left(2y+1\right)+\left(2y+1\right)=43\Leftrightarrow\left(2x+1\right)\left(2y+1\right)=43mà:x,y\in Z\Rightarrow2x+1,2y+1le\Rightarrow2x+1\inƯ\left(43\right)\Rightarrow2x+1\in\left\{-1;1;-43;43\right\}\)
\(+,2x+1=1\Rightarrow\left\{{}\begin{matrix}x=0\\2y+1=43\end{matrix}\right.\Rightarrow x=0;y=21\)
\(+,2x+1=43\Rightarrow\left\{{}\begin{matrix}x=21\\2y+1=1\end{matrix}\right.\Rightarrow x=21;y=0\)
\(+,2x+1=-1\Rightarrow\left\{{}\begin{matrix}x=-1\\2y+1=-43\end{matrix}\right.\Rightarrow x=-1;y=-22\)
\(+,2x+1=-43\Rightarrow\left\{{}\begin{matrix}x=-22\\2y+1=-1\end{matrix}\right.\Rightarrow x=-22;y=-1\)
\(5x-3y=2xy-11\Leftrightarrow10x-6y=4xy-22\Leftrightarrow4xy-10x+6y-22=0\Leftrightarrow2x\left(2y-5\right)+6y-15=7\Leftrightarrow2x\left(2y-5\right)+3\left(2y-5\right)=7\Leftrightarrow\left(2x+3\right)\left(2y-5\right)=7\Rightarrow2x+3\inƯ\left(7\right)\Leftrightarrow mà:x\in Z^+\Rightarrow2x+3\ge5\Rightarrow2x+3=7;2y-5=1\Leftrightarrow x=2;y=3\left(thoaman\right)\) \(Vậy:x=2;y=3\)