Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Điều kiện: \(\left\{{}\begin{matrix}4x+2>0\\x-1>0\\x>0\end{matrix}\right.\)
Hay là: \(x>1\)
Khi đó biến đổi pương trình như sau:
\(\ln\dfrac{4x+2}{x-1}=\ln x\)
\(\Leftrightarrow\dfrac{4x+2}{x-1}=x\)
\(\Leftrightarrow4x+2=x\left(x-1\right)\)
\(\Leftrightarrow x^2-5x-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x_1=\dfrac{5+\sqrt{33}}{2}\\x_2=\dfrac{5-\sqrt{33}}{2}\left(loại\right)\end{matrix}\right.\)
Vậy nghiệm của phương trình là: \(x=\dfrac{5+\sqrt{33}}{2}\)
b) Điều kiện: \(\left\{{}\begin{matrix}3x+1>0\\x>0\end{matrix}\right.\)
Hay là: \(x>0\)
Biến đổi phương trình như sau:
\(\log_2\left(3x+1\right)\log_3x-2\log_2\left(3x+1\right)=0\)
\(\Leftrightarrow\log_2\left(3x+1\right)\left(\log_3x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\log_2\left(3x+1\right)=0\\\log_3x=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+1=2^0\\x=3^2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=9\end{matrix}\right.\)
Vậy nghiệm là x = 9.
Điều kiện :
\(\begin{cases}x^2-4x+5>0\\3+\log_2\left(x^2-4x+5\right)\ge0\\5-\log_2\left(x^2-4x+5\right)\ge0\end{cases}\)
\(\Leftrightarrow x^2-4x+5\le2^5\)
\(\Leftrightarrow2-\sqrt{29}\le x\)\(\le2+\sqrt{29}\)
Đặt \(\begin{cases}u=\sqrt{3+\log_2\left(x^2-4x+5\right)}\\v=\sqrt{5-\log_2\left(x^2-4x+5\right)}\end{cases}\) \(\left(v,u\ge0\right)\)
Khi đó ta có hệ phương trình :
\(\begin{cases}u^2+v^2=8\\u+2v=6\end{cases}\)
Giải ra ta được :
\(\begin{cases}u=2\\v=2\end{cases}\) hoặc \(\begin{cases}u=\frac{2}{5}\\v=\frac{14}{5}\end{cases}\)
Từ đó suy ra \(\log_2\left(x^2-4x+5\right)=1\) hoặc \(\log_2\left(x^2-4x+5\right)=\frac{-71}{25}\) và tìm được 4 nghiệm của phương trình
Điều kiện x>0.
Phương trình đã cho tương đương :
\(\log_3\left(x^2+2x\right)-\log_3\left(3x+2\right)=0\)
\(\Leftrightarrow\log_3\left(x^2+2x\right)=\log_3\left(3x+2\right)\)
\(\Leftrightarrow x^2+2x=3x+2\)
\(\Leftrightarrow x^2-x-2=0\)
\(\Leftrightarrow\begin{cases}x=-1\\x=2\end{cases}\)
Đối chiếu điều kiện ta có phương trình đã cho có nghiệm là \(x=2\)
ĐKXĐ: \(\left\{{}\begin{matrix}x>3\\y>0\end{matrix}\right.\)
Biến đổi pt dưới:
\(\Leftrightarrow x^3-3x-y^3-6y^2-9y-2+ln\left(x-1\right)-ln\left(y+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^3+3\left(x-1\right)^2+ln\left(x-1\right)=\left(y+1\right)^3+3\left(y+1\right)^2+ln\left(y+1\right)\)
Xét hàm: \(f\left(t\right)=t^3+3t^2+lnt\) với \(t>0\)
\(f'\left(t\right)=3t^2+6t+\dfrac{1}{t}>0\) ;\(\forall t>0\Rightarrow f\left(t\right)\) đồng biến
\(\Rightarrow x-1=y+1\Rightarrow x=y+2\)
Thế lên pt trên:
\(y\left(log_2\left(y-1\right)+log_3y\right)=y+3\)
\(\Leftrightarrow log_2\left(y-1\right)+log_3y=1+\dfrac{3}{y}\)
Nhận thấy \(y=3\) là 1 nghiệm
Hàm \(f\left(y\right)=log_2\left(y-1\right)+log_3y\) có \(f'\left(y\right)=\dfrac{1}{\left(y-1\right)ln2}+\dfrac{1}{y.ln3}>0\Rightarrow f\left(y\right)\) đồng biến
Hàm \(g\left(y\right)=1+\dfrac{3}{y}\) có \(g'\left(y\right)=-\dfrac{3}{y^2}< 0\Rightarrow g\left(y\right)\) nghịch biến
\(\Rightarrow f\left(y\right)=g\left(y\right)\) có tối đa 1 nghiệm
\(\Rightarrow y=3\) là nghiệm duy nhất
\(\Rightarrow\left(x;y\right)=\left(3;5\right)\) là cặp nghiệm duy nhất của hệ
Đặt :
\(t=\sqrt{x^2-5x+5}\left(t\ge0\right)\)
Bất phương trình trở thành :
\(\log_2\left(t+1\right)+\log_3\left(t^2+2\right)\le2\)
Xét \(f\left(t\right)=\log_2\left(t+1\right)+\log_3\left(t^2+2\right)\) trên \(\left(0;+\infty\right)\)
Do \(t\ge0\) nên \(\log_2\left(t+1\right)\) và \(\log_3\left(t^2+2\right)\) đều là các hàm số đồng biến, do đó f(t) đồng biến trên \(\left(0;+\infty\right)\)
Lại có f(1)=2, từ đó suy ra \(t\le1\)Giải ra được :\(1\le x\)\(\le\frac{5-\sqrt{5}}{2}\) hoặc \(\frac{5-\sqrt{5}}{2}\le x\) \(\le4\)Điều kiện x>1
Từ (1) ta có \(\log_{\sqrt{3}}\frac{x+1}{x-1}>\log_34\) \(\Leftrightarrow\frac{x+1}{x-1}>2\) \(\Leftrightarrow\) 1<x<3
Đặt \(t=\log_2\left(x^2-2x+5\right)\)
Tìm điều kiện của t :
- Xét hàm số \(f\left(x\right)=\log_2\left(x^2-2x+5\right)\) với mọi x thuộc (1;3)
- Đạo hàm : \(f\left(x\right)=\frac{2x-2}{\ln2\left(x^2-2x+5\right)}>\) mọi \(x\in\left(1,3\right)\)
Hàm số đồng biến nên ta có \(f\left(1\right)\) <\(f\left(x\right)\) <\(f\left(3\right)\) \(\Leftrightarrow\)2<2<3
- Ta có \(x^2-2x+5=2'\)
\(\Leftrightarrow\) \(\left(x-1\right)^2=2'-4\)
Suy ra ứng với mõi giá trị \(t\in\left(2,3\right)\) ta luôn có 1 giá trị \(x\in\left(1,3\right)\)
Lúc đó (2) suy ra : \(t-\frac{m}{t}=5\Leftrightarrow t^2-5t=m\)
Xét hàm số : \(f\left(t\right)=t^2-5t\) với mọi \(t\in\left(2,3\right)\)
- Đạo hàm : \(f'\left(t\right)=2t-5=0\Leftrightarrow t=\frac{5}{2}\)
- Bảng biến thiên :
x | 2 \(\frac{5}{2}\) 3 |
y' | + 0 - |
y | -6 -6 -\(\frac{25}{4}\) |
Để hệ có 2 cặp nghiệm phân biệt \(\Leftrightarrow-6>-m>-\frac{25}{4}\)\(\Leftrightarrow\)\(\frac{25}{4}\) <m<6
Điều kiện :
\(\begin{cases}x-2>0\\3x-5>0\end{cases}\) \(\Leftrightarrow x>2\)
Phương trình tương đương \(\log_2\left(x-2\right)+\log_2\left(3x-5\right)=2\)
\(\Leftrightarrow\log_2\left[\left(x-2\right)\left(3x-5\right)\right]=2\Leftrightarrow3x^2-11x+6=0\)
Giải phương trình trên và đối chiếu với điều kiện ta được nghiệm phương trình đã cho là x=3