Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a,(x+3)(x^2+2021)=0`
`x^2+2021>=2021>0`
`=>x+3=0`
`=>x=-3`
`2,x(x-3)+3(x-3)=0`
`=>(x-3)(x+3)=0`
`=>x=+-3`
`b,x^2-9+(x+3)(3-2x)=0`
`=>(x-3)(x+3)+(x+3)(3-2x)=0`
`=>(x+3)(-x)=0`
`=>` $\left[ \begin{array}{l}x=0\\x=-3\end{array} \right.$
`d,3x^2+3x=0`
`=>3x(x+1)=0`
`=>` $\left[ \begin{array}{l}x=0\\x=-1\end{array} \right.$
`e,x^2-4x+4=4`
`=>x^2-4x=0`
`=>x(x-4)=0`
`=>` $\left[ \begin{array}{l}x=0\\x=4\end{array} \right.$
1) a) \(\left(x+3\right).\left(x^2+2021\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+2021=0\end{matrix}\right.\\\left[{}\begin{matrix}x=-3\left(nhận\right)\\x^2=-2021\left(loại\right)\end{matrix}\right. \)
=> S={-3}
Ta xét các trường hợp :
TH1 : \(x< 1\Rightarrow x-1,x-2< 0\Rightarrow\left|x-1\right|=1-x;\left|x-2\right|=2-x\)
\(\Rightarrow1-x+2-x=5\Leftrightarrow2x=-2\Leftrightarrow x=-1\left(t.m\right)\)
TH2 : \(1\le x< 2\Rightarrow x-2< 0\le x-1\Rightarrow\left|x-1\right|=x-1;\left|x-2\right|=2-x\\ \Rightarrow x-1+2-x=5\Leftrightarrow1=5\left(VL\right)\)
TH3: \(x\ge2\Rightarrow x-1,x-2\ge0\Leftrightarrow\left|x-1\right|=x-1;\left|x-2\right|=x-2\)
\(\Rightarrow x-1+x-2=5\Leftrightarrow2x=8\Leftrightarrow x=4\left(t.m\right)\)
a: =>|x-7|=3-2x
\(\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{3}{2}\\\left(-2x+3\right)^2-\left(x-7\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{3}{2}\\\left(2x-3-x+7\right)\left(2x-3+x-7\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{3}{2}\\\left(x+4\right)\left(3x-10\right)=0\end{matrix}\right.\Leftrightarrow x=-4\)
b: =>|2x-3|=4x+9
\(\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{9}{4}\\\left(4x+9-2x+3\right)\left(4x+9+2x-3\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{9}{4}\\\left(2x+12\right)\left(6x+6\right)=0\end{matrix}\right.\Leftrightarrow x=-1\)
c: =>3x+5=2-5x hoặc 3x+5=5x-2
=>8x=-3 hoặc -2x=-7
=>x=-3/8 hoặc x=7/2
\(a,4\left(x-3\right)^2-\left(2x-1\right)^2\ge12\)
\(\Leftrightarrow4x^2-24x+36-4x^2-4x+1\ge12\)
\(\Leftrightarrow-28x+37\ge12\)
\(\Leftrightarrow-28x\ge12-37\)
\(\Leftrightarrow-28x\ge-25\)
\(\Leftrightarrow x\le\dfrac{25}{28}\)
Vậy \(S=\left\{x\left|x\le\dfrac{25}{28}\right|\right\}\)
b, \(\left(x-4\right)\left(x+4\right)\ge\left(x+3\right)^2+5\)
\(\Leftrightarrow x^2-16\ge x^2+6x+9+5\)
\(\Leftrightarrow x^2-x^2-6x\ge9+5+16\)
\(\Leftrightarrow-6x\ge30\)
\(\Leftrightarrow x\le-5\)
Vậy \(S=\left\{x\left|x\le-5\right|\right\}\)
\(c,\left(3x-1\right)^2-9\left(x+2\right)\left(x-2\right)< 5x\)
\(\Leftrightarrow9x^2-6x-1-9x^2+36< 5x\)
\(\Leftrightarrow9x^2-9x^2-6x-5x+36+1< 0\)
\(\Leftrightarrow-11x+37< 0\)
\(\Leftrightarrow-11x< -37\)
\(\Leftrightarrow x>\dfrac{37}{11}\)
vậy \(S=\left\{x\left|x>\dfrac{37}{11}\right|\right\}\)
<=>(x+1)*(x+2)*(x+4)*(x+5)-40=0
<=>x^4+12*x^3+49*x^2+78*x=0
<=>x*(x+6)*(x^2+6*x+13)=0
suy ra
x=0
x=-6
x^2+6*x+13=0(mà phương trình này không thể phân tích nếu phân tích thì sẽ liên quan tới số vô tỉ lên lớp 9 mới học)
Vậy tập nghiệm của phương trình S=-6;0
Nhớ tich nha bạn
(x + 1)(x + 3)(x + 5)(x + 7) = - 15
<=> (x + 1)(x + 7)(x + 3)(x + 5) = -15
<=> (x^2 + 8x + 7)(x^2 + 9x + 15) = -15
đặt x^2 + 8x + 11 = a
<=> (a + 4)(a - 4) = -15
<=> a^2 - 16 + 15 = 0
<=> a^2 - 1 = 0
<=> (a - 1)(a + 1) = 0
<=> a = 1 hoặc a = -1
thay vào tìm x
Cách kia phân tích loằng ngoằng lắm , e lm cách này ko bt đúng ko nha !
\(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)=-15\)
Th1 : \(x+1=-15\Leftrightarrow x=-16\)
Th2: \(x+3=-15\Leftrightarrow x=-18\)
Th3 : \(x+5=-15\Leftrightarrow x=-20\)
Th4: \(x+7=-15\Leftrightarrow x=-22\)
x=3 nha bn
|x - 1| - |x - 5|=0
vi |x - 1|>= 0 voi moi x
|x - 5| >= 0 voi moi x
=> |x - 1| - | x - 5|=0
hay x - 1=0 ; x - 5=0
x=1 x=5