K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 4 2020

ĐKXĐ: \(x\ne\left\{2;5\right\}\)

\(\Leftrightarrow\left(x+2\right)\left(2-x\right)+3\left(x-5\right)\left(2-x\right)=6\left(x-5\right)\)

\(\Leftrightarrow4-x^2-3x^2+21x-30=6x-30\)

\(\Leftrightarrow-4x^2+15x+4=0\Rightarrow\left[{}\begin{matrix}x=4\\x=-\frac{1}{4}\end{matrix}\right.\)

17 tháng 2 2021

Dạng bất đẳng thức:

\(\frac{1}{2}< x< \frac{7}{4}x>3\)

Kí hiệu khoảng:

\(\left(\frac{1}{2},\frac{7}{4}\right)U\left(3,\infty\right)\)

17 tháng 2 2021

ko hiểu

làm rõ ra đi

11 tháng 1 2022

\(\dfrac{2x+1}{3x+2}=\dfrac{x-1}{x-2}\) (đk: x≠ 2; \(-\dfrac{2}{3}\) )

⇔ \(\left(x-2\right)\left(2x+1\right)=\left(x-1\right)\left(3x+2\right)\)

⇔ \(2x^2+x-4x-2=3x^2+2x-3x-2\)

⇔ \(3x^2-x-2-2x^2+3x+2=0\)

⇔ \(x^2+2x=0\)

⇔ \(x\left(x+2\right)=0\)

⇒ \(\left[{}\begin{matrix}x=0\left(TM\right)\\x=-2\left(TM\right)\end{matrix}\right.\)

Vậy \(S=\left\{0;-2\right\}\)

\(\Leftrightarrow3x^2-3x+2x-2=2x^2-4x+x-2\)

\(\Leftrightarrow x^2+2x=0\)

=>x(x+2)=0

=>x=0 hoặc x=-2

28 tháng 3 2020

a) \(4\sqrt{x}+\frac{2}{\sqrt{x}}< 2x+\frac{1}{2x}+2\)

hay \(2\sqrt{x}+\frac{1}{\sqrt{x}}< x+\frac{1}{4x}+1\)

\(\Leftrightarrow0< x+\frac{1}{4x}+1-2\sqrt{x}-\frac{1}{\sqrt{x}}\)

\(\Leftrightarrow0< \left(\sqrt{x}\right)^2-2\sqrt{x}-2\sqrt{x}\cdot1+1+\frac{1}{\left(2\sqrt{x}\right)^2}-2\cdot\frac{1}{2\sqrt{x}}\)

\(\Leftrightarrow1< \left(\sqrt{x}-1\right)^2+\left(\frac{1}{2\sqrt{x}}-1\right)^2\)

\(\Rightarrow\hept{\begin{cases}x>0\\\sqrt{x}>1\\2\sqrt{x}>1\end{cases}\Rightarrow\hept{\begin{cases}x>1\\x>\frac{1}{4}\end{cases}\Rightarrow}x>1}\)

b) \(\frac{1}{1-x^2}>\frac{3}{\sqrt{1-x^2}}-1\left(1\right)\left(ĐK:-1< x< 1\right)\)

Ta có (1) <=> \(\frac{1}{1-x^2}-1-\frac{3x}{\sqrt{1-x^2}}+2>0\)\(\Leftrightarrow\frac{x^2}{1-x^2}-\frac{3x}{\sqrt{1-x^2}}+2>0\)

Đặt \(t=\frac{x}{\sqrt{1-x^2}}\)ta được

\(t^2-3t+2>0\Leftrightarrow\orbr{\begin{cases}\frac{x}{\sqrt{1-x^2}}< 1\\\frac{x}{\sqrt{1-x^2}}>2\end{cases}\Leftrightarrow\orbr{\begin{cases}\sqrt{1-x^2}>x\left(a\right)\\2\sqrt{1-x^2}< x\left(b\right)\end{cases}}}\)

(a) <=> \(\hept{\begin{cases}x< 0\\1-x^2>0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\1-x^2>x^2\end{cases}}}\)

\(\Leftrightarrow-1< x< 0\)hoặc \(\hept{\begin{cases}x\ge0\\x^2< \frac{1}{2}\end{cases}}\)

\(\Leftrightarrow-1< x< 0\)hoặc \(0\le x\le\frac{\sqrt{2}}{2}\Leftrightarrow-1< x< \frac{\sqrt{2}}{2}\)

(b) \(\Leftrightarrow\hept{\begin{cases}1-x^2>0\\x>0\\4\left(1-x^2\right)< x^2\end{cases}\Leftrightarrow\hept{\begin{cases}0< x< 1\\x^2>\frac{4}{5}\end{cases}\Leftrightarrow}\frac{2}{\sqrt{5}}< x< 1}\)

28 tháng 3 2020

ok đợi nấu ăn xong r làm cho

29 tháng 1 2016

a)2x^3+3x^2-x-1=0

\(\Leftrightarrow\)(2x^3+3x^2)-(x-1)

\(\Leftrightarrow\)2x^2(x+3)-(x-1)

ĐẾN ĐÂY CHẢ BIT NHÂN TỬ CHUNG LÀ SỐ NÀO NỮA HÌNH NHƯ SAI ĐỀ

10 tháng 3 2016

Mới lớp 6, tớ ko giải được...

27 tháng 2 2016

\(\frac{x^3+4x^2+x-6}{x^3-4x^2+x+6}\le0\Rightarrow\frac{\left(x-1\right)\left(x+2\right)\left(x+3\right)}{\left(x+1\right)\left(x-3\right)\left(x-2\right)}\le0\)

Tới đây bạn lập bảng xét dấu là ra