K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 6 2019

ĐKXĐ: ...

\(\Leftrightarrow\frac{9\left(2x+5\right)^2}{4\left(x+4\right)^2}+\left(2x+5\right)^2=8\)

\(\Leftrightarrow\frac{9\left(2x+5\right)^2}{4\left(x+4\right)^2}-2.\frac{3\left(2x+5\right)}{2\left(x+4\right)}.\left(2x+5\right)+\left(2x+5\right)^2+\frac{3\left(2x+5\right)^2}{x+4}=8\)

\(\Leftrightarrow\left(\left(2x+5\right)-\frac{3\left(2x+5\right)}{2\left(x+4\right)}\right)^2+\frac{3\left(2x+5\right)^2}{x+4}=8\)

\(\Leftrightarrow\left(\frac{\left(2x+5\right)^2}{2\left(x+4\right)}\right)^2+\frac{3\left(2x+5\right)^2}{x+4}-8=0\)

Đặt \(\frac{\left(2x+5\right)^2}{x+4}=a\)

\(\Leftrightarrow\frac{a^2}{4}+3a-8=0\)

Nghiệm xấu, bạn tự giải nốt

5 tháng 4 2021

|x-9|=2x+5

Xét 3 TH

TH1: x>9 => x-9=2x+5 =>-9-5=x =>x=-14 (L)

TH2: x<9 => 9-x=2x+5 => 9-5=3x =>x=4/3(t/m)

TH3: x=9 =>0=23(L)

Vậy  x= 4/3

5 tháng 4 2021

Ta có:\(\dfrac{1-2x}{4}-2\le\dfrac{1-5x}{8}+x\\ \)

\(\dfrac{2-4x-16}{8}\le\dfrac{1-5x+8x}{8}\)

\(-4x-14\le1+3x\\ \Leftrightarrow7x+15\ge0\\ \Leftrightarrow x\ge-\dfrac{15}{7}\)

NV
29 tháng 6 2019

Nhận thấy \(x=0\) không phải nghiệm, pt tương đương:

\(\frac{1}{x+1+\frac{1}{x}}+\frac{2}{x+2+\frac{1}{x}}=\frac{8}{15}\)

Đặt \(x+1+\frac{1}{x}=a\)

\(\frac{1}{a}+\frac{2}{a+1}=\frac{8}{15}\)

\(\Leftrightarrow a+1+2a=\frac{8}{15}a\left(a+1\right)\)

\(\Leftrightarrow8a^2-37a-15=0\Rightarrow\left[{}\begin{matrix}a=5\\a=-\frac{3}{8}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+1+\frac{1}{x}=5\\x+1+\frac{1}{x}=-\frac{3}{8}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-4x+1=0\\x^2+\frac{11}{8}x+1=0\end{matrix}\right.\)

26 tháng 4 2020

\(\frac{2x-8}{6}-\frac{3x+1}{4}=\frac{9x-2}{8}+\frac{3x-1}{12}\)

\(\Leftrightarrow\frac{4\left(2x-8\right)}{24}-\frac{6\left(3x+1\right)}{24}=\frac{3\left(9x-2\right)}{24}+\frac{2\left(3x-1\right)}{24}\)

\(\Leftrightarrow\frac{8x-32}{24}-\frac{18x+6}{24}=\frac{27x-6}{24}+\frac{6x-2}{24}\)

\(\Leftrightarrow8x-32-18x-6=27x-6+6x-2\)

\(\Leftrightarrow8x-18x-27x-6x=-6-2+32+6\)

\(\Leftrightarrow-42x=30\)

\(\Leftrightarrow x=-\frac{5}{7}\)

31 tháng 7 2016

a) \(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\)

\(\Leftrightarrow\)\(\frac{21\left(4x+3\right)-15\left(6x-2\right)}{105}=\frac{35\left(5x+4\right)+315}{105}\)

\(\Leftrightarrow21\left(4x+3\right)-15\left(6x-2\right)=35\left(5x+4\right)+315\)

\(\Leftrightarrow84x+63-90x+30=175x+140+315\)

\(\Leftrightarrow84x-90x-175x=140+315-63-30\)

\(\Leftrightarrow-181x=362\)

\(\Leftrightarrow x=-2\)

b)\(\frac{\left(x-2\right)^2}{3}-\frac{\left(2x-3\right)\left(2x+3\right)}{8}+\frac{\left(x+4\right)^2}{6}=0\)

\(\Leftrightarrow\)\(\frac{8\left(x-2\right)^2-3\left(2x-3\right)\left(2x+3\right)+4\left(x+4\right)^2}{24}=0\)

\(\Leftrightarrow8\left(x^2-4x+4\right)-3\left(4x^2-9\right)+4\left(x^2+8x+16\right)=0\)

\(\Leftrightarrow8x^2-32x+32-12x^2+27+4x^2+32x+64=0\)

\(\Leftrightarrow8x^2-12x^2+4x^2-32x+32x=-64-27-32\)

\(\Leftrightarrow0x=-123\) (vô nghiệm)

NV
29 tháng 6 2019

ĐKXĐ: ...

Đặt \(\frac{x}{3}-\frac{4}{x}=a\Rightarrow a^2=\frac{x^2}{9}+\frac{16}{x^2}-\frac{8}{3}\Rightarrow\frac{x^2}{9}+\frac{16}{x^2}=a^2+\frac{8}{3}\)

\(a^2+\frac{8}{3}=\frac{10}{3}a\Leftrightarrow3a^2-10a+8=0\Rightarrow\left[{}\begin{matrix}a=2\\a=\frac{4}{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\frac{x}{3}-\frac{4}{x}=2\\\frac{x}{3}-\frac{4}{x}=\frac{4}{3}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-6x-12=0\\x^2-4x-12=0\end{matrix}\right.\)

4 tháng 3 2020

a, \(5\left(m+3x\right)\left(x+1\right)-4\left(1+2x\right)=80\)

Phương trình nhận \(x=2\)làm nghiệm nên :

\(5\left(m+3.2\right)\left(2+1\right)-4\left(1+2.2\right)=80\)

\(\Leftrightarrow15m+90-20=80\)

\(\Leftrightarrow15m=80+20-90\)

\(\Leftrightarrow15m=10\Leftrightarrow m=1,5\)

....

b, \(3\left(2x+m\right)\left(3x+2\right)-2\left(3x+1\right)^2=43\)

Phương trình nhận \(x=1\)làm nghiệm nên :

\(3\left(2.1+m\right)\left(3.1+2\right)-2\left(3.1+1\right)^2=43\)

\(\Leftrightarrow30+15m-32=43\)

\(\Leftrightarrow15m=43+32-30\)

\(\Leftrightarrow15m=45\Leftrightarrow m=3\)

....

\(\frac{315-x}{101}+\frac{313-x}{103}+\frac{311-x}{105}+\frac{309-x}{107}+4=0\)

\(\Leftrightarrow\frac{315-x}{101}+1+\frac{313-x}{103}+1+\frac{311-x}{105}+1+\frac{309-x}{107}+1=0\)

\(\Leftrightarrow\frac{416-x}{101}+\frac{416-x}{103}+\frac{416-x}{105}+\frac{416-x}{107}=0\)

\(\Leftrightarrow\left(416-x\right)\left(\frac{1}{101}+\frac{1}{103}+\frac{1}{105}+\frac{1}{107}\right)=0\)

\(\Leftrightarrow416-x=0\)

\(\Leftrightarrow x=416\)

4 tháng 3 2020

a) 5(m + 3x)(x + 1) - 4(1 + 2x) = 80

Phương trình có nghiệm x = 2:

5(m + 3.2)(2 + 1) - 4(1 + 2.2) = 80

<=> 5(m + 6).3 - 4.5 = 80

<=> 15(m + 6) - 4.5 = 80

<=> 15(m + 6) - 20 = 80

<=> 15(m + 6) = 80 + 20

<=> 15(m + 6) = 100

<=> m + 6 = 100 : 15

<=> m + 6 = 20/3

<=> m = 20/3 - 6

<=> m = 2/3

b) 3(2x + m)(3x + 2) - 2(3x + 1)2 = 43

Phương trình có nghiệm x = 1:

3(2.1 + m)(3.1 + 2) - 2(3.1 + 1)2 = 43

<=> 3(2 + m).5 - 2.16 = 43

<=> 15(2 + m) - 32 = 43

<=> 15(2 + m) = 43 + 32

<=> 15(2 + m) = 75

<=> 2 + m = 75 : 15

<=> 2 + m = 5

<=> m = 5 - 2

<=> m = 3

29 tháng 3 2020

Câu 6 :

a, Ta có : \(x+\frac{2x+\frac{x-1}{5}}{3}=1-\frac{3x-\frac{1-2x}{3}}{5}\)

=> \(\frac{15x}{15}+\frac{5\left(2x+\frac{x-1}{5}\right)}{15}=\frac{15}{15}-\frac{3\left(3x-\frac{1-2x}{3}\right)}{15}\)

=> \(15x+5\left(2x+\frac{x-1}{5}\right)=15-3\left(3x-\frac{1-2x}{3}\right)\)

=> \(15x+10x+\frac{5\left(x-1\right)}{5}=15-9x+\frac{3\left(1-2x\right)}{3}\)

=> \(15x+10x+x-1=15-9x+1-2x\)

=> \(15x+10x+x-1-15+9x-1+2x=0\)

=> \(37x-17=0\)

=> \(x=\frac{17}{37}\)

Vậy phương trình trên có nghiệm là \(S=\left\{\frac{17}{37}\right\}\)

Bài 7 :

a, Ta có : \(\frac{x-23}{24}+\frac{x-23}{25}=\frac{x-23}{26}+\frac{x-23}{27}\)

=> \(\frac{x-23}{24}+\frac{x-23}{25}-\frac{x-23}{26}-\frac{x-23}{27}=0\)

=> \(\left(x-23\right)\left(\frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27}\right)=0\)

=> \(x-23=0\)

=> \(x=23\)

Vậy phương trình trên có nghiệm là \(S=\left\{23\right\}\)

c, Ta có : \(\frac{x+1}{2004}+\frac{x+2}{2003}=\frac{x+3}{2002}+\frac{x+4}{2001}\)

=> \(\frac{x+1}{2004}+1+\frac{x+2}{2003}+1=\frac{x+3}{2002}+1+\frac{x+4}{2001}+1\)

=> \(\frac{x+2005}{2004}+\frac{x+2005}{2003}=\frac{x+2005}{2002}+\frac{x+2005}{2001}\)

=> \(\frac{x+2005}{2004}+\frac{x+2005}{2003}-\frac{x+2005}{2002}-\frac{x+2005}{2001}=0\)

=> \(\left(x+2005\right)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)

=> \(x+2005=0\)

=> \(x=-2005\)

Vậy phương trình trên có nghiệm là \(S=\left\{-2005\right\}\)

e, Ta có : \(\frac{x-45}{55}+\frac{x-47}{53}=\frac{x-55}{45}+\frac{x-53}{47}\)

=> \(\frac{x-45}{55}-1+\frac{x-47}{53}-1=\frac{x-55}{45}-1+\frac{x-53}{47}-1\)

=> \(\frac{x-100}{55}+\frac{x-100}{53}=\frac{x-100}{45}+\frac{x-100}{47}\)

=> \(\frac{x-100}{55}+\frac{x-100}{53}-\frac{x-100}{45}-\frac{x-100}{47}=0\)

=> \(\left(x-100\right)\left(\frac{1}{55}+\frac{1}{53}-\frac{1}{45}-\frac{1}{47}\right)=0\)

=> \(x-100=0\)

Vậy phương trình trên có nghiệm là \(S=\left\{100\right\}\)

NV
30 tháng 6 2019

\(\frac{2}{x^2+1}+\frac{4}{x^2+3}+\frac{6}{x^2+5}=3+\frac{x^2-1}{x^2+6}\)

\(\Leftrightarrow\frac{x^2-1}{x^2+6}+1-\frac{2}{x^2+1}+1-\frac{4}{x^2+3}+1-\frac{6}{x^2+5}=0\)

\(\Leftrightarrow\frac{x^2-1}{x^2+6}+\frac{x^2-1}{x^2+1}+\frac{x^2-1}{x^2+3}+\frac{x^2-1}{x^2+5}=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(\frac{1}{x^2+6}+\frac{1}{x^2+1}+\frac{1}{x^2+3}+\frac{1}{x^2+5}\right)=0\)

\(\Rightarrow x=\pm1\)