Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)\(\frac{1}{x+\sqrt{x^2+x}}+\frac{1}{x-\sqrt{x^2+x}}=x\)
\(\Leftrightarrow\frac{x-\sqrt{x^2+x}}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}+\frac{x+\sqrt{x^2+x}}{\left(x-\sqrt{x^2+x}\right)\left(x+\sqrt{x^2+x}\right)}-\frac{x\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}=0\)
\(\Leftrightarrow\frac{x-\sqrt{x^2+x}+x+\sqrt{x^2+x}-x^2}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}=0\)
\(\Leftrightarrow\frac{-x^2+2x}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}=0\)
\(\Leftrightarrow\frac{-x\left(x+2\right)}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}=0\)
Dễ thấy: x=0 ko là nghiệm nên \(x+2=0\Rightarrow x=-2\)
c)\(\sqrt{2x+4}-2\sqrt{2-x}=\frac{12x-8}{\sqrt{9x^2+16}}\)
\(\Leftrightarrow\frac{\left(2x+4\right)-4\left(2-x\right)}{\sqrt{2x+4}+2\sqrt{2-x}}=\frac{4\left(3x-2\right)}{\sqrt{9x^2+16}}\)
\(\Leftrightarrow\frac{2\left(3x-2\right)}{\sqrt{2x+4}+2\sqrt{2-x}}=\frac{4\left(3x-2\right)}{\sqrt{9x^2+16}}\)
\(\Leftrightarrow\frac{2\left(3x-2\right)}{\sqrt{2x+4}+2\sqrt{2-x}}-\frac{4\left(3x-2\right)}{\sqrt{9x^2+16}}=0\)
\(\Leftrightarrow\left(3x-2\right)\left(\frac{2}{\sqrt{2x+4}+2\sqrt{2-x}}-\frac{4}{\sqrt{9x^2+16}}\right)=0\)
\(\Leftrightarrow x=\frac{2}{3}\)
\(\Rightarrow\sqrt{x^2-\frac{1}{4}+\sqrt{\left(x+\frac{1}{2}\right)^2}}=\frac{2x^3}{2}+\frac{x^2}{2}+\frac{2x}{2}+\frac{1}{2}\)
\(\Rightarrow\sqrt{x^2+x+\frac{1}{2}-\frac{1}{4}}=\sqrt{x^2+x+\frac{1}{4}}=x^3+\frac{x^2}{2}+x+\frac{1}{2}\)
\(\Rightarrow\sqrt{\left(x+\frac{1}{2}\right)^2}=x+\frac{1}{2}=x^3+\frac{x^2}{2}+x+\frac{1}{2}\)
\(\Rightarrow x^3+\frac{x^2}{2}+x+\frac{1}{2}-x-\frac{1}{2}=x^3+\frac{x^2}{2}=0\Rightarrow\frac{2x^3+x^2}{2}=0\)
\(\Rightarrow2x^3+x^2=0\Rightarrow x^2\left(2x+1\right)=0\Rightarrow\hept{\begin{cases}x^2=0\Rightarrow x=0\\2x+1=0\Rightarrow2x=-1\Rightarrow x=-\frac{1}{2}\end{cases}}\)
vậy x=0 và x=-1/2
\(\sqrt{x^2-\frac{1}{4}+\sqrt{x^2+x+\frac{1}{4}}}=\frac{1}{2}\left(2x^3+x^2+2x+1\right)\) (*) (ĐKXĐ: \(\forall x\in R\))
\(\Leftrightarrow\sqrt{x^2-\frac{1}{4}+\sqrt{\left(x+\frac{1}{2}\right)^2}}=\frac{1}{2}\left[x^2\left(2x+1\right)+\left(2x+1\right)\right]\)
\(\Leftrightarrow\sqrt{x^2-\frac{1}{4}+\left|x+\frac{1}{2}\right|}=\frac{1}{2}\left(2x+1\right)\left(x^2+1\right)\)
+) Xét \(x+\frac{1}{2}\ge0\Leftrightarrow x\ge-\frac{1}{2}\). Khi đó pt (*) trở thành:
\(\sqrt{x^2-\frac{1}{4}+x+\frac{1}{2}}=\frac{1}{2}\left(2x+1\right)\left(x^2+1\right)\)
\(\Leftrightarrow\sqrt{\left(x+\frac{1}{2}\right)^2}=\frac{1}{2}\left(2x+1\right)\left(x^2+1\right)\)
\(\Leftrightarrow x+\frac{1}{2}=\frac{1}{2}\left(2x+1\right)\left(x^2+1\right)\) (Do \(x\ge\frac{1}{2}\))
\(\Leftrightarrow\frac{\left(2x+1\right)\left(x^2+1\right)-\left(2x+1\right)}{2}=0\)
\(\Leftrightarrow x^2\left(2x+1\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{1}{2}\end{cases}}\) (t/m ĐKXĐ)
+) Xét \(x+\frac{1}{2}< 0\Leftrightarrow x< -\frac{1}{2}\). Khi đó: \(2x+1< 0\)
Ta thấy: \(2x+1< 0;x^2+1>0;\frac{1}{2}>0\Rightarrow\frac{1}{2}\left(2x+1\right)\left(x^2+1\right)< 0\)
Mà \(\sqrt{x^2-\frac{1}{4}+\left|x+\frac{1}{2}\right|}\ge0\) nên Vô lí ---> Loại TH này.
Vậy tập nghiệm của pt (*) là \(S=\left\{0;-\frac{1}{2}\right\}.\)
\(pt\Leftrightarrow\sqrt{x^2-\frac{1}{4}+\sqrt{\left(x+\frac{1}{2}\right)^2}}=\frac{1}{2}\left(2x^3+x^2+2x+1\right)\Leftrightarrow\sqrt{x^2-\frac{1}{4}+\left|x+\frac{1}{2}\right|}=\frac{1}{2}\left(x^2+1\right)\left(2x+1\right)\)
Ta thấy vế phải bằng \(\frac{1}{2}\left(x^2+1\right)\left(2x+1\right)\), vế trái là căn thức nên để pt có nghiệm thì vế phải phải dương. Hay \(2x+1\ge0\)
Với \(x\ge\frac{-1}{2}\) ta có \(pt\Leftrightarrow\sqrt{x^2-\frac{1}{4}+x+\frac{1}{2}}=\frac{1}{2}\left(x^2+1\right)\left(2x+1\right)\)
\(\Leftrightarrow\sqrt{x^2+x+\frac{1}{4}}=\frac{1}{2}\left(x^2+1\right)\left(2x+1\right)\Leftrightarrow x+\frac{1}{2}=\left(x^2+1\right)\left(x+\frac{1}{2}\right)\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)\left(x^2+1-1\right)=0\Leftrightarrow x^2\left(x+\frac{1}{2}\right)=0\Leftrightarrow x=0\) hoặc \(x=\frac{-1}{2}\)
Vậy pt đã cho có 2 nghiệm là \(x=0;x=\frac{-1}{2}\)
Chúc em luôn học tập tốt :))
Điều kiện xác định bạn tự giải nhé :)
\(\frac{\sqrt{\left(5-3x\right)^2}-\sqrt{\left(x-1\right)^2}}{x-3+\sqrt{\left(3+2x\right)^2}}=4\Leftrightarrow\frac{\left|5-3x\right|-\left|x-1\right|}{x-3+\left|2x+3\right|}=4\)
Xét các trường hợp :
1. Nếu \(1\le x\le\frac{5}{3}\).............................
2. Nếu \(-\frac{3}{2}\le x< 1\)................................
3. Nếu \(x< -\frac{3}{2}\).........................................
4. Nếu \(x>\frac{5}{3}\)...........................................
a: \(\Leftrightarrow\left\{{}\begin{matrix}x^2-4x+4=x^2-1\\x>=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4x=-5\\x>=2\end{matrix}\right.\Leftrightarrow x=\dfrac{5}{4}\left(loại\right)\)
b: \(\Leftrightarrow\sqrt{2x^2+1}=5\)
\(\Leftrightarrow2x^2+1=25\)
\(\Leftrightarrow2x^2=24\)
hay \(x\in\left\{2\sqrt{3};-2\sqrt{3}\right\}\)
c: \(\Leftrightarrow\left|x\right|+\left|x-1\right|=2\)
Trường hợp 1: x<0
Pt trở thành -x-x+1=2
=>-2x=1
hay x=-1/2(nhận)
TRường hợp 2:0<=x<1
Pt trở thành x+1-x=2
=>1=2(loại)
Trường hợp 3: x>=1
Pt trở thành x+x-1=2
=>2x-1=2
hay x=3/2(nhận)