K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2021

ĐKXĐ : \(\hept{\begin{cases}x\ne3\\x\ne-2\end{cases}}\)

<=> \(\frac{x^2-3x+5}{\left(x-3\right)\left(x+2\right)}-\frac{x+2}{\left(x-3\right)\left(x+2\right)}=0\)

<=> \(\frac{x^2-4x+3}{\left(x-3\right)\left(x+2\right)}=0\)

=> x2 - 4x + 3 = 0

Δ' = b'2 - ac = (-2)2 - 3 = 1

Δ' > 0, áp dụng công thức nghiệm thu được x1 = 3 (ktm) ; x2 = 1 (tm)

Vậy pt có nghiệm x = 1

20 tháng 11 2021

\(ĐK:x\ne3\\ PT\Leftrightarrow\dfrac{x^2+3x+2}{x-3}\left(-x-1+x^2-2x-7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\dfrac{\left(x+1\right)\left(x+2\right)}{x-3}=0\\x^2-3x-8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\\x=\dfrac{3+\sqrt{41}}{2}\\x=\dfrac{3-\sqrt{41}}{2}\end{matrix}\right.\)

PT tương đương

\(\left(x^2+7x+6\right)\left(x^2+5x+6\right)=\dfrac{-3x^2}{4}\)

Xét \(x=0\Rightarrow6.6=0\)(vô lý)

Xét \(x\ne0\). Ta chia 2 vế của PT cho \(x^2\ne0\). PT tương đương

\(\left(x+\dfrac{6}{x}+7\right)\left(x+\dfrac{6}{x}+5\right)=\dfrac{-3}{4}\)

Đặt \(x+\dfrac{6}{x}+5=t\)

PT\(\Leftrightarrow t\left(t+2\right)=\dfrac{-3}{4}\Leftrightarrow t^2+2t+1=\dfrac{1}{4}\)

\(\Leftrightarrow\left(t+1\right)^2=\dfrac{1}{4}\Leftrightarrow\left[{}\begin{matrix}t+1=\dfrac{-1}{2}\\t+1=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}t=\dfrac{-3}{2}\\t=\dfrac{-1}{2}\end{matrix}\right.\)

Đến đây bạn thay vào là tìm được nghiệm nhé.

 

20 tháng 11 2021

\(ĐK:x\ne3;x\ne2\\ PT\Leftrightarrow\dfrac{x^2+3x+2}{x-3}\left(\dfrac{x+1}{x-2}+1+\dfrac{x^2}{x-2}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\dfrac{\left(x+1\right)\left(x+2\right)}{x-3}=0\\\dfrac{x^2+x+2}{x-2}=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\\x^2+x+2=0\left(vô.n_0\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\end{matrix}\right.\)

NV
28 tháng 1 2021

a.

ĐKXĐ: \(\left\{{}\begin{matrix}x\ge2\\y\ge3\end{matrix}\right.\)

\(\left\{{}\begin{matrix}3\sqrt{x-2}+3\sqrt{y-3}=9\\2\sqrt{x-2}-3\sqrt{y-3}=-4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-2}+3\sqrt{y-3}=9\\5\sqrt{x-2}=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-2}+3\sqrt{y-3}=9\\\sqrt{x-2}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2}=1\\\sqrt{y-3}=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=7\end{matrix}\right.\)

NV
28 tháng 1 2021

b.

ĐKXĐ: \(\left\{{}\begin{matrix}x\ne-1\\y\ne-4\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\dfrac{15x}{x+1}+\dfrac{10}{y+4}=20\\\dfrac{4x}{x+1}-\dfrac{10}{y+4}=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{15x}{x+1}+\dfrac{10}{y+4}=20\\\dfrac{19x}{x+1}=28\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{x+1}=\dfrac{28}{19}\\\dfrac{1}{y+4}=-\dfrac{4}{19}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}19x=28x+28\\4y+16=-19\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{28}{9}\\y=-\dfrac{35}{4}\end{matrix}\right.\)

17 tháng 7 2023

2b. ĐKXĐ : \(x\ge-5\) (*)

Ta có \(\sqrt{x+5}=x^2-5\)

\(\Leftrightarrow4x^2-20-4\sqrt{x+5}=0\)

\(\Leftrightarrow4x^2+4x+1-4.\left(x+5\right)-4\sqrt{x+5}-1=0\)

\(\Leftrightarrow\left(2x+1\right)^2-\left(2\sqrt{x+5}+1\right)^2=0\)

\(\Leftrightarrow\left(x+1+\sqrt{x+5}\right)\left(x-\sqrt{x+5}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=-\sqrt{x+5}\left(1\right)\\x=\sqrt{x+5}\left(2\right)\end{matrix}\right.\)

Giải (1) có (1) \(\Leftrightarrow\left(x+1\right)^2=x+5\)  ;  ĐK: \(\left(x\le-1\right)\)

\(\Leftrightarrow x^2+x-4=0\Leftrightarrow x=\dfrac{-1\pm\sqrt{17}}{2}\) 

Kết hợp (*) và ĐK được \(x=\dfrac{-1-\sqrt{17}}{2}\) là nghiệm phương trình gốc

Giải (2) có (2) <=> \(x^2-x-5=0\) ; ĐK : \(x\ge0\)

\(\Leftrightarrow x=\dfrac{1\pm\sqrt{21}}{2}\)

Kết hợp (*) và ĐK được \(x=\dfrac{1+\sqrt{21}}{2}\) là nghiệm phương trình gốc

Tập nghiệm \(S=\left\{\dfrac{-1-\sqrt{17}}{2};\dfrac{1+\sqrt{21}}{2}\right\}\)

17 tháng 7 2023

2c. ĐKXĐ \(x\ge1\) (*)

Đặt \(\sqrt{x-1}=a;\sqrt[3]{2-x}=b\left(a\ge0\right)\) (1) 

Ta có \(\sqrt{x-1}-\sqrt[3]{2-x}=5\Leftrightarrow a-b=5\)

Từ (1) có \(a^2+b^3=1\) (2)

Thế a = b + 5 vào (2) ta được 

\(b^3+\left(b+5\right)^2=1\Leftrightarrow b^3+b^2+10b+24=0\)

\(\Leftrightarrow b^3+8+b^2+10b+16=0\)

\(\Leftrightarrow\left(b+2\right).\left(b^2-b+12\right)=0\)

\(\Leftrightarrow b=-2\) (Vì \(b^2-b+12=\left(b-\dfrac{1}{2}\right)^2+\dfrac{47}{4}>0\forall b\)

Với b = -2 \(\Leftrightarrow\sqrt[3]{2-x}=-2\Leftrightarrow x=10\) (tm) 

Tập nghiệm \(S=\left\{10\right\}\)

22 tháng 6 2017

a) \(\dfrac{12}{x-1}-\dfrac{8}{x+1}=1\) \(\Leftrightarrow\) \(\dfrac{12\left(x+1\right)-8\left(x-1\right)}{x^2-1}=1\)

\(\Leftrightarrow\) \(\dfrac{12x+12-8x+8}{x^2-1}=1\) \(\Leftrightarrow\) \(\dfrac{4x+20}{x^2-1}=1\)

\(\Leftrightarrow\) \(x^2-1=4x+20\) \(\Leftrightarrow\) \(x^2-4x-21=0\)

giải pt ta có 2 nghiệm : \(x_1=7;x_2=-3\)

vậy phương trình có 2 nghiệm \(x=7;x=-3\)

b) \(\dfrac{16}{x-3}+\dfrac{30}{1-x}=3\) \(\Leftrightarrow\) \(\dfrac{16\left(1-x\right)+30\left(x-3\right)}{\left(x-3\right)\left(1-x\right)}=3\)

\(\Leftrightarrow\) \(\dfrac{16-16x+30x-90}{x-x^2-3+3x}=3\) \(\Leftrightarrow\) \(\dfrac{14x-74}{-x^2+4x-3}=3\)

\(\Leftrightarrow\) \(3\left(-x^2+4x-3\right)=14x-74\)

\(\Leftrightarrow\) \(-3x^2+12x-9=14x-74\)

\(\Leftrightarrow\) \(3x^2-2x-65=0\)

giải pt ta có 2 nghiệm : \(x_1=5;x_2=\dfrac{-13}{3}\)

vậy phương trình có 2 nghiệm \(x=5;x=\dfrac{-13}{3}\)

27 tháng 12 2018

c) ĐK: x\(\ne3,x\ne-2\)

\(\dfrac{x^2-3x+5}{\left(x-3\right)\left(x+2\right)}=\dfrac{1}{x-3}\Leftrightarrow\dfrac{x^2-3x+5}{\left(x-3\right)\left(x+2\right)}=\dfrac{x+2}{\left(x-3\right)\left(x+2\right)}\Leftrightarrow x^2-3x+5=x+2\Leftrightarrow x^2-4x+3=0\Leftrightarrow x^2-x-3x+3=0\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=1\left(tm\right)\\x=3\left(ktm\right)\end{matrix}\right.\)

Vậy S={1}

d) ĐK: \(x\ne2,x\ne-4\)

\(\dfrac{2x}{x-2}-\dfrac{x}{x+4}=\dfrac{8x+8}{\left(x-2\right)\left(x+4\right)}\Leftrightarrow\dfrac{2x\left(x+4\right)}{\left(x-2\right)\left(x+4\right)}-\dfrac{x\left(x-2\right)}{\left(x-2\right)\left(x+4\right)}=\dfrac{8x+8}{\left(x-2\right)\left(x+4\right)}\Leftrightarrow\dfrac{2x^2+8x}{\left(x-2\right)\left(x+4\right)}-\dfrac{x^2-2x}{\left(x-2\right)\left(x+4\right)}=\dfrac{8x+8}{\left(x-2\right)\left(x+4\right)}\Leftrightarrow\dfrac{2x^2+8x-x^2+2x}{\left(x-2\right)\left(x+4\right)}=\dfrac{8x+8}{\left(x-2\right)\left(x+4\right)}\Leftrightarrow x^2+10x=8x+8\Leftrightarrow x^2+2x-8=0\Leftrightarrow x^2-2x+4x-8=0\Leftrightarrow x\left(x-2\right)+4\left(x-2\right)=0\Leftrightarrow\left(x-2\right)\left(x+4\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}x-2=0\\x+4=0\end{matrix}\right.\)\(\left[{}\begin{matrix}x=2\left(ktm\right)\\x=-4\left(ktm\right)\end{matrix}\right.\)

Vậy phương trình vô nghiệm

4 tháng 5 2022

undefinedundefined

4 tháng 5 2022

Cảm ơn ạ

NV
1 tháng 3 2019

a/ \(\left(x+3\right)\left(3\left(x^2+1\right)^2+2\left(x+3\right)^2\right)=5\left(x^2+1\right)^3\)

\(\Leftrightarrow3\left(x+3\right)\left(x^2+1\right)^2+2\left(x+3\right)^3-5\left(x^2+1\right)^3=0\)

\(\Leftrightarrow3\left(x+3\right)\left(x^2+1\right)^2-3\left(x^2+1\right)^3+2\left(x+3\right)^3-2\left(x^2+1\right)^3=0\)

\(\Leftrightarrow3\left(x^2+1\right)^2\left(-x^2+x+2\right)+2\left(-x^2+x+2\right)\left(\left(x+3\right)^2+\left(x+3\right)\left(x^2+1\right)+\left(x^2+1\right)^2\right)=0\)

\(\Leftrightarrow\left(-x^2+x+2\right)\left[3\left(x^2+1\right)^2+2\left(x+3+\dfrac{x^2+1}{2}\right)^2+\dfrac{3\left(x^2+1\right)^2}{4}\right]=0\)

\(\Leftrightarrow-x^2+x+2=0\) (phần ngoặc phía sau luôn dương)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

NV
1 tháng 3 2019

b/ \(3\left(x^2+2x-1\right)^2-2\left(x^2+3x-1\right)^2+5\left(x^2+3x-1-\left(x^2+2x-1\right)\right)^2=0\)

Đặt \(\left\{{}\begin{matrix}a=x^2+2x-1\\b=x^2+3x-1\end{matrix}\right.\)

\(3a^2-2b^2+5\left(b-a\right)^2=0\Leftrightarrow8a^2+3b^2-10ab=0\)

\(\Leftrightarrow\left(4a-3b\right)\left(2a-b\right)=0\Leftrightarrow\left[{}\begin{matrix}4a=3b\\2a=b\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4\left(x^2+2x-1\right)=3\left(x^2+3x-1\right)\\2\left(x^2+2x-1\right)=x^2+3x-1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-x-1=0\\x^2+x-1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1+\sqrt{5}}{2}\\x=\dfrac{1-\sqrt{5}}{2}\\x=\dfrac{-1+\sqrt{5}}{2}\\x=\dfrac{-1-\sqrt{5}}{2}\end{matrix}\right.\)