Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: `x-1 >0 <=>x>1`
`(x^2-4x+3)/(sqrt(x-1))=sqrt(x-1)`
`<=>x^2-4x+3=x-1`
`<=>x^2-5x+4=0`
`<=>x^2-x-4x+4=0`
`<=>x(x-1)-4(x-1)=0`
`<=>(x-4)(x-1)=0`
`<=> [(x=4\ (TM)),(x=1\ (KTM)):}`
``
Vậy `S={4}`.
\(\left(3x+1\right)\sqrt{2x^2-1}=5x^2+\dfrac{3}{2}x-3\)
\(\Leftrightarrow2\left(3x+1\right)\sqrt{2x^2-1}=10x^2+3x-6\)
Đặt \(t=\sqrt{2x^2-1}\left(t\ge0\right)\) \(\left(1\right)\) nên ta có phương trình:
\(4t^2-2\left(3x+1\right)t+2x^2+3x-2=0\)
Ta có: \(\Delta'=\left(3x+1\right)^2-4\left(2x^2+3x-2\right)=\left(x-3\right)^2\)
⇒ Phương trình có hai nghiệm phân biệt
\(t_1=\dfrac{2x-1}{2}\)
\(t_2=\dfrac{x+2}{2}\)
Thay lần lượt các giá trị của t vào (1) nên: \(x\in\left\{\dfrac{-1+\sqrt{6}}{2};\dfrac{2+\sqrt{60}}{7}\right\}\)
bạn có chắc đây là toán lớp 6 ko? mình cá chắc ko ai nhìn thấy dạng này trong toán lớp 6.
Đây đâu phải toán lớp 6. Lớp 6 chưa học mấy cái này đâu @_@
1. ta có: \(\sqrt{\dfrac{4}{9}-\sqrt{\dfrac{25}{36}}}=\sqrt{\dfrac{4}{9}-\dfrac{5}{6}}=\sqrt{-\dfrac{7}{18}}\)
Mà \(-\dfrac{7}{18}\) là số âm \(\Rightarrow\) Bài toán không có kết quả.
2. Ta có:
\(\left(x-1\right)^2=\dfrac{9}{16}\)
\(\Rightarrow\left(x-1\right)^2=\left(\dfrac{3}{4}\right)^2\)
\(\Rightarrow x-1=\dfrac{3}{4}\)
\(\Rightarrow x=\dfrac{3}{4}+1\)
\(\Rightarrow x=1\dfrac{3}{4}\)
Vậy \(x=1\dfrac{3}{4}\)
Câu 2 không phải toán lớp 6 mà bạn.
Ta có: \(x=\sqrt{x}\)
\(\Rightarrow x=1\)
Vậy \(x=1\)
Bạn Trần Đăng Nhất làm thiếu nha:
\(x=\sqrt{x}=>x^2=\left(\sqrt{x}\right)^2\)
\(=>x^2=x=>x^2-x=0\)
\(=>x\left(x-1\right)=0\)
\(=>\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Vậy có 2 giá trị của x là 0 và 1..
CHÚC BẠN HỌC TỐT.....
binh rồi căn thì cứ chuyển bỏ dấu âm đi nó tương tự dấu giá trị tuyệt đối thôi
Ta có:\(\frac{2-x}{2011}-1=\frac{1-x}{2012}-\frac{x}{2013}\)
<=> \(\frac{2013-x}{2011}-1=\frac{2013-x}{2012}-\frac{x}{2013}\)
<=>\(\frac{2013-x}{2011}-\frac{x-2013}{2013}-\frac{2013-x}{2012}=0\)
<=>\(\left(2013-x\right)\left(\frac{1}{2011}+\frac{1}{2013}-\frac{1}{2012}\right)=0\)
<=>\(2013-x=\frac{0}{\frac{1}{2011}+\frac{1}{2013}-\frac{1}{2012}}=0\)
<=>\(x=0+2013=2013\)
Vậy \(x=2013\)
\(\dfrac{1}{2.4}+\dfrac{1}{4.6}+...+\dfrac{1}{\left(2x-2\right).2x}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{2}{2.4}+\dfrac{2}{4.6}+...+\dfrac{2}{\left(2x-2\right).2x}=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{4}+...+\dfrac{1}{2x-2}-\dfrac{1}{2x}=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{2x}=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{1}{2x}=\dfrac{1}{4}\)
\(\Leftrightarrow2x=4\\ \Leftrightarrow x=2\left(tm\right)\)
\(\Leftrightarrow\dfrac{1}{4}\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+.......+\dfrac{1}{\left(x-1\right)x}\right)=\dfrac{1}{8}\) ( đk x khác 0 , x khác 1)
\(\Leftrightarrow\dfrac{1}{4}\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+....+\dfrac{1}{x-1}-\dfrac{1}{x}\right)=\dfrac{1}{8}\)
\(\Leftrightarrow1-\dfrac{1}{x}=\dfrac{1}{2}\)
=> x =2 ( tm)
Lời giải:
a.
$x=\frac{-5}{6}-\frac{2}{3}=\frac{-3}{2}$
b.
$\frac{2}{3}x=\frac{1}{10}-\frac{1}{2}=\frac{-2}{5}$
$x=\frac{-2}{5}: \frac{2}{3}=\frac{-3}{5}$
c.
$\frac{7}{8}x=\frac{2}{9}-\frac{1}{3}=\frac{-1}{9}$
$x=\frac{-1}{9}: \frac{7}{8}=\frac{-8}{63}$
d.
$\frac{5}{7}: x=\frac{1}{6}-\frac{4}{5}=\frac{-19}{30}$
$x=\frac{5}{7}: \frac{-19}{30}=\frac{-150}{133}$
e.
$(\frac{2}{5}-1\frac{2}{3}):x=\frac{2}{5}+\frac{3}{5}=1$
$\frac{-19}{15}: x=1$
$x=\frac{-19}{15}:1 =\frac{-19}{15}$
f.
$(-\frac{3}{4}+x).2\frac{2}{3}=1$
$\frac{-3}{4}+x=1: 2\frac{2}{3}=\frac{3}{8}$
$x=\frac{3}{8}+\frac{3}{4}=\frac{9}{8}$
ĐKXĐ: `{(x+1>0),(x ne0):} <=> {(x> -1),(x ne 0):}`
`2/(sqrt(x+1))+1/(x sqrt(x+1)) =1/x`
`<=>(2x+1)/(x sqrt(x+1)) =1/x`
`<=>x(2x+1)=x sqrt(x+1)`
`<=>2x+1=sqrt(x+1)`
`=>(2x+1)^2=x+1`
`<=>4x^2+4x+1=x+1`
`<=>4x^2+3x=0`
`<=>x(4x+3)=0`
`<=>[(x=0\ (KTM)),(x=-3/4):}`
Thay `x=-3/4` vào PT ban đầu `=>` Không thỏa mãn.
Vậy phương trình vô nghiệm.
!!!