Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu đặt u = x 2 − 1 thì x 2 = u + 1 nên phương trình có dạng
( 2 + 2)u = 2(u + 1) − 2 (1)
Ta giải phương trình (1):
(1) ⇔ 2 u + 2u = 2u + 2 − 2
⇔ 2 u = 2 − 2
⇔ 2 u = 2 ( 2 − 1) ⇔ u = 2 − 1
⇔ x 2 − 1 = 2 − 1
⇔ x 2 = 2
⇔ x = 1
d: \(x\left(x+1\right)\left(x^2+x+1\right)=42\left(1\right)\)
=>\(\left(x^2+x\right)\left(x^2+x+1\right)=42\)
Đặt \(a=x^2+x\)
Phương trình (1) sẽ trở thành \(a\left(a+1\right)=42\)
=>\(a^2+a-42=0\)
=>(a+7)(a-6)=0
=>\(\left(x^2+x+7\right)\left(x^2+x-6\right)=0\)
mà \(x^2+x+7=\left(x+\dfrac{1}{2}\right)^2+\dfrac{27}{4}>0\forall x\)
nên \(x^2+x-6=0\)
=>(x+3)(x-2)=0
=>\(\left[{}\begin{matrix}x+3=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)
e: \(\left(x-1\right)\left(x-3\right)\left(x+5\right)\left(x+7\right)-297=0\left(2\right)\)
=>\(\left(x-1\right)\left(x+5\right)\left(x-3\right)\left(x+7\right)-297=0\)
=>\(\left(x^2+4x-5\right)\left(x^2+4x-21\right)-297=0\)
Đặt \(b=x^2+4x\)
Phương trình (2) sẽ trở thành \(\left(b-5\right)\left(b-21\right)-297=0\)
=>\(b^2-26b+105-297=0\)
=>\(b^2-26b-192=0\)
=>(b-32)(b+6)=0
=>\(\left(x^2+4x-32\right)\left(x^2+4x+6\right)=0\)
mà \(x^2+4x+6=\left(x+2\right)^2+2>0\forall x\)
nên \(x^2+4x-32=0\)
=>(x+8)(x-4)=0
=>\(\left[{}\begin{matrix}x+8=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-8\\x=4\end{matrix}\right.\)
f: \(x^4-2x^2-144x-1295=0\)
=>\(x^4-7x^3+7x^3-49x^2+47x^2-329x+185x-1295=0\)
=>\(\left(x-7\right)\cdot\left(x^3+7x^2+47x+185\right)=0\)
=>\(\left(x-7\right)\left(x+5\right)\left(x^2+2x+37\right)=0\)
mà \(x^2+2x+37=\left(x+1\right)^2+36>0\forall x\)
nên (x-7)(x+5)=0
=>\(\left[{}\begin{matrix}x-7=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-5\end{matrix}\right.\)
Mình nghĩ đề câu a là: \(x+\sqrt{5}+\sqrt{x}-1=-6\)
Đặt \(\sqrt{x}=t\Rightarrow t^2=x\)
\(Ta\)\(được\): \(t^2+\sqrt{5}+t-1=-6\)
\(\Leftrightarrow t^2-5+t+\sqrt{5}=0\)
\(\Leftrightarrow\left(t-\sqrt{5}\right).\left(t+\sqrt{5}\right)+\left(t+\sqrt{5}\right)=0\)
\(\Leftrightarrow\left(t+\sqrt{5}\right).\left(t-\sqrt{5}+1\right)=0\)
\(\Rightarrow\hept{\begin{cases}t=-\sqrt{5}\\t=\sqrt{5}-1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=5\\x=6-2\sqrt{5}\end{cases}}\)
\(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2=\left(x^2+4x+8+\dfrac{3}{2}x\right)^2-\dfrac{1}{4}x^2=\left(x^2+\dfrac{11}{2}x+8\right)^2-\left(\dfrac{1}{2}x\right)^2=\left(x^2+\dfrac{11}{2}x+8-\dfrac{1}{2}x\right)\left(x^2+\dfrac{11}{2}x+8+\dfrac{1}{2}x\right)=\left(x^2+5x+8\right)\left(x^2+6x+8\right)=\left(x+2\right)\left(x+4\right)\left(x^2+5x+8\right)\)
\(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2\)
\(=\left(x^2+4x+8\right)^2+x\left(x^2+4x+8\right)+2x\left(x^2+4x+8\right)+2x^2\)
\(=\left(x^2+4x+8\right)\left(x^2+5x+8\right)+2x\left(x^2+5x+8\right)\)
\(=\left(x^2+5x+8\right)\left(x+2\right)\left(x+4\right)\)
1) Ta có: \(x^2-4x+4=0\)
\(\Leftrightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x-2=0\)
hay x=2
Vậy: S={2}
a: =>(x^2-2x+1-1)^2+2(x-1)^2=1
=>(x-1)^4-2(x-1)^2+1+2(x-1)^2=1
=>(x-1)^4=0
=>x-1=0
=>x=1
b: =>(x^2+2)^2+3x(x^2+2)+2x^2-20x^2=0
=>(x^2+2)^2+3x(x^2+2)-18x^2=0
=>(x^2+2+6x)(x^2-3x+2)=0
=>\(x\in\left\{-3\pm\sqrt{7};1;2\right\}\)
\(\left(x^2+1\right)^2+3x\left(x^2+1\right)+2x^2=0\)
\(a=\left(x^2+1\right)+\dfrac{3x}{2};\Rightarrow a^2=\left(x^2+1\right)^2+3.x\left(x^2+1\right)^2+\dfrac{9}{4}x^2\)
\(\Leftrightarrow a^2-\dfrac{1}{4}x^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=\dfrac{1}{2}x\\a=-\dfrac{1}{2}x\end{matrix}\right.\)
\(a=\dfrac{1}{2}x\Leftrightarrow x^2+1+\dfrac{3x}{2}=\dfrac{1}{2}x\Leftrightarrow x^2+x+1=0vn\)
\(a=\dfrac{-1}{2}x\Leftrightarrow x^2+1+\dfrac{3x}{2}=\dfrac{-1}{2}x\Leftrightarrow x^2+2x+1=0=>x=-1\)