\(a)|-2,5x|=x-12\)

...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2018

a) ta có

|9+x| = 9+x thì 9+x ≥ 0 ⇔ x ≥ -9

|9+x|=-(9-x)thì 9+x <0 ⇔ x<-9

th1 với x ≥ -9

9+x=2x

⇔ 9=2x-x

⇔ 9=x (tmđk)

th2 với x < -9

-(9+x)=2x

⇔ -9-x=2x

⇔ -x-2x=9

⇔ -3x=9

⇔ x=-2 (ktm)

vậy phương trình có tập nghiệm là S+{ 9}

8 tháng 4 2018

b) Với : x < -6 , phương trình có dạng :

- x - 6 = 2x + 9

<=> -3x = 15

<=> x = - 5 ( không thỏa mãn )

Với : x ≥ - 6 , phương trình có dạng :

x + 6 = 2x + 9

<=> x = - 3 ( thỏa mãn)

Vậy , phương trình nhận : x = - 3 làm nghiệm duy nhất

c) Với : x < 0 , phương trình có dạng :

- 5x = 3x - 2

<=> -8x = -2

<=> x = \(\dfrac{1}{4}\) ( không thỏa mãn )

Với : x ≥ 0 , phương trình có dạng :
5x = 3x - 2

<=> 2x = -2

<=> x = -1 ( không thỏa mãn )

Vậy, phương trình đã cho vô nghiệm

7 tháng 6 2017

n) \(\left|3-x\right|+x^2-x\left(x+4\right)=0\)

\(\Rightarrow\left|3-x\right|+x^2-x^2-4x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3-x-4x=0\left(đk:3-x\ge0\right)\\-\left(3-x\right)-4x=0\left(đk:3-x< 0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{5}\left(đk:x\le3\right)\\x=-1\left(đk:x>3\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{5}\\x\in\varnothing\end{matrix}\right.\)

Vậy \(x=\dfrac{3}{5}\)

m) \(\left(x-1\right)^2+\left|x+21\right|-x^2-13=0\)

\(\Rightarrow x^2-2x+1+\left|x+21\right|-x^2-13=0\)

\(\Leftrightarrow-2x-12+\left|x+21\right|=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-2x-12+x+21=0\left(đk:x+21\ge0\right)\\-2x-12-\left(x+21\right)=0\left(đk:x+21< 0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=9\left(đk:x\ge-21\right)\\x=-11\left(đk:x< -21\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=9\\x\in\varnothing\end{matrix}\right.\)

Vậy \(x=9\)

7 tháng 6 2017

e) \(\left|5x\right|=3x-2\)

\(\Rightarrow5\cdot\left|x\right|=3x-2\)

\(\Leftrightarrow5\cdot\left|x\right|-3x=-2\)

\(\Leftrightarrow\left[{}\begin{matrix}5x-3x=-2\left(đk:x\ge0\right)\\5\cdot\left(-x\right)-3x=-2\left(đk:x< 0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\left(đk:x\ge0\right)\\x=\dfrac{1}{4}\left(đk:x< 0\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x\in\varnothing\\x\in\varnothing\end{matrix}\right.\)

Vậy \(x\in\varnothing\)

g) \(\left|-2,5x\right|=x-12\)

\(\Rightarrow2,5\cdot\left|x\right|=x-12\)

\(\Leftrightarrow2x5\cdot\left|x\right|-x=-12\)

\(\Leftrightarrow\left[{}\begin{matrix}2,5x-x=-12\left(đk:x\ge0\right)\\2,5\cdot\left(-x\right)-x=-12\left(đk:x< 0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-8\left(đk:x\ge0\right)\\x=\dfrac{24}{7}\left(đk:x< 0\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x\in\varnothing\\x\in\varnothing\end{matrix}\right.\)

Vậy \(x\in\varnothing\)

11 tháng 1 2018

a ) \(\left(5x+7\right)\left(x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7}{5}\\x=7\end{matrix}\right.\)

b ) \(\left(x^2-1\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=-3\end{matrix}\right.\)

c )\(x^2-x-6=0\)

\(\Leftrightarrow x^2-3x+2x-6=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)

d ) \(x^2+x-12=0\)

\(\Leftrightarrow x^2-4x+3x-12\)

\(\Leftrightarrow\left(x+3\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=4\end{matrix}\right.\)

e ) \(15\left(x+9\right)\left(x-3\right)\left(x+21\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-9\\x=3\\x=-21\end{matrix}\right.\)

g ) \(\left(x^2+1\right)\left(x^2+4x+4\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)\left(x+2\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(loại\right)\\x=-2\end{matrix}\right.\)

i ) \(x^4+2x^3-2x^2+2x-3=0\)

\(\Leftrightarrow x^4+3x^3-x^3-3x^2+x^2+3x-x-3=0\)

\(\Leftrightarrow x^3\left(x+3\right)-x^2\left(x+3\right)+x\left(x+3\right)-\left(x+3\right)=0\)

\(\Leftrightarrow\left(x^3-x^2+x-1\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)\left(x-1\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(loại\right)\\x=1\\x=-3\end{matrix}\right.\)

h) \(x^2+5x+6=0\)

\(\Leftrightarrow x^2+3x+2x+6=0\)

\(\Leftrightarrow\left(x+2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-3\end{matrix}\right.\)

4 tháng 3 2020

a, \(5\left(m+3x\right)\left(x+1\right)-4\left(1+2x\right)=80\)

Phương trình nhận \(x=2\)làm nghiệm nên :

\(5\left(m+3.2\right)\left(2+1\right)-4\left(1+2.2\right)=80\)

\(\Leftrightarrow15m+90-20=80\)

\(\Leftrightarrow15m=80+20-90\)

\(\Leftrightarrow15m=10\Leftrightarrow m=1,5\)

....

b, \(3\left(2x+m\right)\left(3x+2\right)-2\left(3x+1\right)^2=43\)

Phương trình nhận \(x=1\)làm nghiệm nên :

\(3\left(2.1+m\right)\left(3.1+2\right)-2\left(3.1+1\right)^2=43\)

\(\Leftrightarrow30+15m-32=43\)

\(\Leftrightarrow15m=43+32-30\)

\(\Leftrightarrow15m=45\Leftrightarrow m=3\)

....

\(\frac{315-x}{101}+\frac{313-x}{103}+\frac{311-x}{105}+\frac{309-x}{107}+4=0\)

\(\Leftrightarrow\frac{315-x}{101}+1+\frac{313-x}{103}+1+\frac{311-x}{105}+1+\frac{309-x}{107}+1=0\)

\(\Leftrightarrow\frac{416-x}{101}+\frac{416-x}{103}+\frac{416-x}{105}+\frac{416-x}{107}=0\)

\(\Leftrightarrow\left(416-x\right)\left(\frac{1}{101}+\frac{1}{103}+\frac{1}{105}+\frac{1}{107}\right)=0\)

\(\Leftrightarrow416-x=0\)

\(\Leftrightarrow x=416\)

4 tháng 3 2020

a) 5(m + 3x)(x + 1) - 4(1 + 2x) = 80

Phương trình có nghiệm x = 2:

5(m + 3.2)(2 + 1) - 4(1 + 2.2) = 80

<=> 5(m + 6).3 - 4.5 = 80

<=> 15(m + 6) - 4.5 = 80

<=> 15(m + 6) - 20 = 80

<=> 15(m + 6) = 80 + 20

<=> 15(m + 6) = 100

<=> m + 6 = 100 : 15

<=> m + 6 = 20/3

<=> m = 20/3 - 6

<=> m = 2/3

b) 3(2x + m)(3x + 2) - 2(3x + 1)2 = 43

Phương trình có nghiệm x = 1:

3(2.1 + m)(3.1 + 2) - 2(3.1 + 1)2 = 43

<=> 3(2 + m).5 - 2.16 = 43

<=> 15(2 + m) - 32 = 43

<=> 15(2 + m) = 43 + 32

<=> 15(2 + m) = 75

<=> 2 + m = 75 : 15

<=> 2 + m = 5

<=> m = 5 - 2

<=> m = 3

6 tháng 4 2020

a) \(2x^3+5x^2-3x=0\Leftrightarrow x\left(2x^2+5x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x^2+5x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=\frac{1}{2}\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=0\\x=-3\\x=\frac{1}{2}\end{matrix}\right.\)

b) \(2x^3+6x^2=x^2+3x\Leftrightarrow2x^3+5x^2-3x=0\)

Vậy $\orpt{\begin{matrix}x=0\\x=-3\\x=\frac{1}{2}\end{matrix}}$ (Giải câu a)

c) \(x^3-12=13x\Leftrightarrow x^3-13x-12=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-x-12\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-4\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=4\\x=-3\end{matrix}\right.\)

Vậy $\orpt{\begin{matrix}x=-1\\x=4\\x=-3\end{matrix}}$

d) \(\left(x-1\right)\left(x^2+5x-2\right)-\left(x^3-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+5x-2\right)-\left(x-1\right)\left(x^2+x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(4x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{3}{4}\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=1\\x=\frac{3}{4}\end{matrix}\right.\)

8 tháng 5 2020

a, <=> 5x= 15 <=> x=5

b, <=> x(4x+5)=0 <=> \(\left[{}\begin{matrix}x=0\\x=-\frac{5}{4}\end{matrix}\right.\)

c, <=> \(x^2-4x+4=1-5x< =>x^2+x+3=0< =>\)vô nghiệm

d, <=>(x+2)(x+3)=0<=> \(\left[{}\begin{matrix}x=-2\\x=-3\end{matrix}\right.\)

e, Đặt x^2=a(đk a>=0)

Pt<=>\(a^2-5a+4=0< =>\left(a-4\right)\left(a-1\right)=0< =>\left[{}\begin{matrix}a=4\left(TM\right)< =>x=2\\a=1\left(TM\right)< =>x=1\end{matrix}\right.\)

f, <=>\(5x^2-15x=16x^2+16x+4+1< =>11x^2+31x+5=0< =>\left[{}\begin{matrix}x=\frac{-31+\sqrt{741}}{22}\\x=\frac{-31-\sqrt{741}}{22}\end{matrix}\right.\)

2 tháng 7 2017

\(a,x^4+2x^3+x^2=\left(x^2+x\right)^2\)

\(b,x^2+5x-6=x^2-x+6x-6=x\left(x-1\right)+6\left(x-1\right)\)\(=\left(x-1\right)\left(x+6\right)\)

\(c,5x\left(x-1\right)=x-1\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\Leftrightarrow\left(5x-1\right)\left(x-1\right)=0\)\(x^4+8x=x\left(x^3+8\right)=x\left(x+2\right)\left(x^2-2x+4\right)\) \(e,x^2+x-6=x^2+3x-2x-6=x\left(x+3\right)-2\left(x+3\right)=\left(x-2\right)\left(x+3\right)\)\(f,x^2-2x-3=x^2-3x+x-3=x\left(x-3\right)+\left(x-3\right)=\left(x+1\right)\left(x-3\right)\)\(h,2x^2+5x-3=0\Leftrightarrow2x^2-6x+x-3=0\Leftrightarrow2x\left(x-3\right)+\left(x-3\right)=0\Leftrightarrow\left(2x+1\right)\left(x-3\right)=0\)

4 tháng 3 2019

c) \(\frac{3x+5}{2}-1\le\frac{x+2}{3}+x\)

\(\Leftrightarrow\frac{3.\left(3x+5\right)}{6}-\frac{6}{6}\le\frac{2.\left(x+2\right)}{6}+\frac{6x}{6}\)

\(\Leftrightarrow9x+15-6\le2x+4+6x\)

\(\Leftrightarrow9x-2x-6x\le4-15+6\)

\(\Leftrightarrow x\le-5\)

Vậy nghiệm của bpt là x \(\le-5\)

4 tháng 3 2019

Mk giải luôn ko ghi lại đầu bài nữa nha

a, 3x-12<0

3x<12

x<4

b,25-15x>0

-15x>-25

x<\(\frac{5}{3}\)

c,3(3x+5)-6\(\le\)2(x+2)+6x

9x+15-6\(\le\)2x+4+6x

9x+9\(\le\)8x+4

9x-8x\(\le\)4-9

x\(\le\)-5

d,6(x+4)-30x+120>10x-15(x-2)

6x+24-30x+120>10x-15x+30

-24x+144>-5x+30

-24x+5x>30-144

-19x>-144

x>6

e, 3(5x-2)>1-2x

15x-6>1-2x

15x+2x>1+6

17x>7

x>\(\frac{7}{17}\)