Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(1-\frac{2x-1}{9}=3-\frac{3x-3}{12}\)
\(\Leftrightarrow\frac{108-12\cdot\left(2x-1\right)}{108}=\frac{108\cdot3-9\cdot\left(3x-3\right)}{108}\)
\(\Rightarrow108-12\cdot\left(x-1\right)=108\cdot3-9\cdot\left(3x-3\right)\)
\(\Leftrightarrow108-24x+12=324-27x+27\)
\(\Leftrightarrow3x=231\)
\(\Rightarrow x=77\)
c,\(\frac{3}{4x-20}+\frac{15}{50-2x^2}+\frac{7}{6x+30}=0\)
\(\Rightarrow3\cdot\left(50-2x^2\right)\cdot\left(6x+30\right)+15\cdot\left(4x-20\right)\cdot\left(6x+30\right)+7\cdot\left(4x-20\right)\cdot\left(50-2x^2\right)=0\)
\(\Leftrightarrow900x+4500-36x^3-180x^2+360x^2+1800x-1800x-9000+1400x-56x^3-7000+280x^2=0\)
\(\Leftrightarrow-92x^3+460x^2+2300x-11500=0\)
\(\Leftrightarrow92x^3-460x^2-2300x+11500=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-5\\x=5\end{cases}}\)
a) Thay x = 3 vào bất phương trình ta được: 2.3 + 3 < 9 <=> 9 < 9 (khẳng định sai)
Vậy x = 3 không là nghiệm của bất phương trình2x + 3 < 9
b) Thay x = 3 vào bất phương trình ta có: -4.3 > 2.3 + 5 => -12 > 11 (khẳng định sai)
Vậy x = 3 không là nghiệm của bất phương trình -4x > 2x + 5
c) Thay x = 3 vào bất phương trình ta có: 5 - 3 > 3.3 -12 => 2 > -3 (khẳng định đúng)
Vậy x = 3 là nghiệm của bất phương trình 5 - x > 3x - 12
Đầu tiên , ta cộng các phần nguyên lại với nhau trước :
( 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 ) + ( \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{8}{72}+\frac{1}{90}+\frac{1}{10}\)
= 45 + \(\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{42}+\frac{1}{72}\right)+\left(\frac{1}{10}+\frac{1}{20}\right)+\left(\frac{1}{30}+\frac{1}{90}\right)+\frac{1}{56}\)
= 45 +
tới đây tớ chịu , các cậu giúp với
Đầu tiên , cộng các phần nguyên lại với nhau , ta có :
( 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 ) + ( \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{10}\))
= 45 + \(\left(\frac{1}{6}+\frac{1}{30}\right)+\frac{1}{2}+\frac{1}{12}+\frac{1}{20}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{10}\)
sau khi cộng trong ngoặc , ta được 6 / 30 , rút gọn tối giản còn 1 / 5
= 45 + \(\left(\frac{1}{5}+\frac{1}{20}\right)+\frac{1}{2}+\frac{1}{12}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{10}\)
sau khi cộng trong ngoặc và rút gọn tối giản , ta được 1 / 4
= 45 + \(\left(\frac{1}{4}+\frac{1}{2}\right)+\frac{1}{12}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{10}\)
sau khi cộng trong ngoặc rồi rút gọn , ta được 3 / 4
= 45 + \(\left(\frac{3}{4}+\frac{1}{12}\right)+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{10}\)
rút gọn lại ta được 5 / 6
= 45 + \(\left(\frac{5}{6}+\frac{1}{42}\right)+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{10}\)
rút gọn tối giản ra 6 / 7
= 45 + \(\left(\frac{6}{7}+\frac{1}{56}\right)+\frac{1}{72}+\frac{1}{90}+\frac{1}{10}\)
sau khi tính trong ngoặc rút gọn được 7 / 8
= 45 + \(\left(\frac{7}{8}+\frac{1}{72}\right)+\frac{1}{90}+\frac{1}{10}\)
tính trong ngoặc rồi rút gọn ra 8 / 9
= 45 + \(\left(\frac{8}{9}+\frac{1}{90}\right)+\frac{1}{10}\)
cũng rút gọn tiếp ta được 9 / 10
= 45 + \(\left(\frac{9}{10}+\frac{1}{10}\right)\)
= 45 + 1
= 46
a: \(\Leftrightarrow\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{9}-\dfrac{1}{10}\right)\cdot\left(x-1\right)+\dfrac{1}{10}x-x=-\dfrac{9}{10}\)
\(\Leftrightarrow\dfrac{9}{10}x-\dfrac{9}{10}-\dfrac{9}{10}x=-\dfrac{9}{10}\)
=>-9/10=-9/10(luôn đúng)
b: \(\Leftrightarrow\dfrac{195x+195+130x+195+117x+195+100x+195}{195}=\dfrac{22\cdot39+4\cdot65+6\cdot39+40\cdot5}{195}\)
=>347x+780=1552
=>347x=772
hay x=772/347
a) Ta có: \(\frac{3x-11}{11}-\frac{x}{3}=\frac{3x-5}{7}-\frac{5x-3}{9}\)
\(\Leftrightarrow\frac{63\left(3x-11\right)}{693}-\frac{231x}{693}-\frac{99\left(3x-5\right)}{693}+\frac{77\left(5x-3\right)}{693}=0\)
\(\Leftrightarrow189x-693-231x-297x+495+385x-231=0\)
\(\Leftrightarrow46x-429=0\)
\(\Leftrightarrow46x=429\)
hay \(x=\frac{429}{46}\)
Vậy: \(x=\frac{429}{46}\)
b) Ta có: \(\frac{9x-0,7}{4}-\frac{5x-1,5}{7}=\frac{7x-1,1}{6}-\frac{5\left(0,4-2x\right)}{5}\)
\(\Leftrightarrow\frac{9x-0,7}{4}-\frac{5x-1,5}{7}-\frac{7x-1,1}{6}+\frac{5\left(0,4-2x\right)}{5}=0\)
\(\Leftrightarrow105\left(9x-0,7\right)-60\left(5x-1,5\right)-70\left(7x-1,1\right)+420\left(0,4-2x\right)=0\)
\(\Leftrightarrow945x-\frac{147}{2}-300x+90-490x+77+168-840x=0\)
\(\Leftrightarrow-685x+261.5=0\)
\(\Leftrightarrow-685x=-261.5\)
hay \(x=\frac{523}{1370}\)
Vậy: \(x=\frac{523}{1370}\)
c) Ta có: \(\frac{5\left(x-1\right)+2}{6}-\frac{7x-1}{4}=\frac{2\left(2x-1\right)}{7}-5\)
\(\Leftrightarrow\frac{14\left(5x-3\right)}{84}-\frac{21\left(7x-1\right)}{84}-\frac{24\left(2x-1\right)}{84}+\frac{420}{84}=0\)
\(\Leftrightarrow70x-42-147x+21-48x+24+420=0\)
\(\Leftrightarrow-125x+423=0\)
\(\Leftrightarrow-125x=-423\)
hay \(x=\frac{423}{125}\)
Vậy: \(x=\frac{423}{125}\)
d) Ta có: \(14\frac{1}{2}-\frac{2\left(x+3\right)}{5}=\frac{3x}{2}-\frac{2\left(x-7\right)}{3}\)
\(\Leftrightarrow\frac{435}{30}-\frac{12\left(x+3\right)}{30}-\frac{45x}{30}+\frac{20\left(x-7\right)}{30}=0\)
\(\Leftrightarrow435-12x-36-45x+20x-140=0\)
\(\Leftrightarrow-37x+259=0\)
\(\Leftrightarrow-37x=-259\)
hay \(x=7\)
Vậy: x=7