Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) a = 3; b = - 5 ; c = 2 => a + b + c = 0
=> PT có nghiệm là x = 1 ; và x = c/a = 2/3
b) từ PT thứ hai => x = -5y. thế x = -5y vào PT thứ nhất
=> 3.(-5y) - 4y = 1 <=> -15y - 4y = 1 <=> -19y = 1 <=> y = \(-\frac{1}{19}\) => x = (-5).(\(-\frac{1}{19}\)) = \(\frac{5}{19}\)
Vậy nghiệm của hệ là: (x;y) = (\(\frac{5}{19}\); \(-\frac{1}{19}\) )
Ta có: a=3; b= -5; c= 2
Δ=b^2 - 4ac = -5^2 - 4.3.2
= 25 - 24 = 1
Vì Δ > 0 nên pt có 2 nghiệm phân biệt
\(x_1=\frac{5-\sqrt[]{1}}{2.3}\) = \(\frac{2}{3}\)
\(X_2=_{ }\frac{5+\sqrt{1}}{2.3}\) =1
Thay \(m=-2\) vào pt :
\(\Rightarrow\left(-2+1\right)x^2-3x+5=0\)
\(\Rightarrow-x^2-3x+5=0\)
\(\Delta=b^2-4ac=\left(-3\right)^2-4\left(-1\right)5=29>0\)
\(\Rightarrow\)Pt có 2 nghiệm phân biệt
\(\left\{{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{3+\sqrt{29}}{-2}=\dfrac{-3+\sqrt{29}}{2}\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{3-\sqrt{29}}{-2}=\dfrac{-3-\sqrt{29}}{2}\end{matrix}\right.\)
ĐKXĐ: \(-\dfrac{1}{3}\le x\le6\)
\(\left(\sqrt{3x+1}-4\right)+\left(1-\sqrt{6-x}\right)+\left(3x^2-14x-5\right)=0\)
\(\Leftrightarrow\dfrac{3\left(x-5\right)}{\sqrt{3x+1}+4}+\dfrac{x-5}{1+\sqrt{6-x}}+\left(x-5\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(\dfrac{3}{\sqrt{3x+1}+4}+\dfrac{1}{1+\sqrt{6-x}}+3x+1\right)=0\)
\(\Leftrightarrow x-5=0\) (do \(\dfrac{3}{\sqrt{3x+1}+4}+\dfrac{1}{1+\sqrt{6-x}}+3x+1>0;\forall x\))
\(\Rightarrow x=5\)
ĐKXĐ: \(\left\{{}\begin{matrix}3x+1>=0\\6-x>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=-\dfrac{1}{3}\\x< =6\end{matrix}\right.\)
\(\sqrt{3x+1}-\sqrt{6-x}+3x^2-14x-8=0\)
=>\(\sqrt{3x+1}-4+1-\sqrt{6-x}+3x^2-14x-5=0\)
=>\(\dfrac{3x+1-16}{\sqrt{3x+1}+4}+\dfrac{1-6+x}{1+\sqrt{6-x}}+3x^2-15x+x-5=0\)
=>\(\dfrac{3\cdot\left(x-5\right)}{\sqrt{3x+1}+4}+\dfrac{x-5}{\sqrt{6-x}+1}+\left(x-5\right)\left(3x+1\right)=0\)
=>\(\left(x-5\right)\left(\dfrac{3}{\sqrt{3x+1}+4}+\dfrac{1}{\sqrt{6-x}+1}+3x+1\right)=0\)
=>x-5=0
=>x=5(nhận)
Đk: \(x\ge1\)
\(\Leftrightarrow4\left(2\sqrt{x-1}-1\right)+\left(4x-5\right)\left(x+2\right)=0\)
\(\Leftrightarrow\dfrac{4\left(4x-5\right)}{2\sqrt{x-1}+1}+\left(4x-5\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(4x-5\right)\left(\dfrac{4}{2\sqrt{x-1}+1}+x+2\right)=0\)
\(\Leftrightarrow x=\dfrac{5}{4}\)(Dễ thấy ngoặc to lớn hơn 0 với \(x\ge1\))
\(b,x^2+3x-2=0\\ \Delta=3^2-4.1.\left(-2\right)=17\\ =>\left[{}\begin{matrix}x_1=\dfrac{-3+\sqrt{17}}{2}\\x_2=\dfrac{-3-\sqrt{17}}{2}\end{matrix}\right.\)
Mấy câu còn lại mình giải rồi
\(ĐK:x\ge\dfrac{1}{2}\\ PT\Leftrightarrow\sqrt{2x-1}=-x^2+3x-1\\ \Leftrightarrow2x-1=\left(-x^2+3x-1\right)^2=\left(x^2-3x+1\right)^2\\ \Leftrightarrow2x-1=x^4+9x^2+1-6x^3-6x+2x^2\\ \Leftrightarrow x^4-6x^3+11x^2-8x+2=0\\ \Leftrightarrow x^4-x^3-5x^3+5x^2+6x^2-6x-2x+2=0\\ \Leftrightarrow\left(x-1\right)\left(x^3-5x^2+6x-2\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x^3-x^2-4x^2+4x+2x-2\right)=0\\ \Leftrightarrow\left(x-1\right)^2\left(x^2-4x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x^2-4x+2=0\left(1\right)\end{matrix}\right.\\ \Delta\left(1\right)=16-8=8\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4-2\sqrt{2}}{2}=2-\sqrt{2}\left(tm\right)\\x=\dfrac{4+2\sqrt{2}}{2}=2+\sqrt{2}\left(tm\right)\end{matrix}\right.\\ S=\left\{1;2-\sqrt{2};2+\sqrt{2}\right\}\)
1) Ta có: \(x^3-3x^2+2x=0\)
\(\Leftrightarrow x\left(x^2-3x+2\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=2\end{matrix}\right.\)
Vậy: S={0;1;2}
2) Ta có: \(\dfrac{x^2-x-1}{x+1}=2x-1\)
\(\Leftrightarrow x^2-x-1=\left(2x-1\right)\left(x+1\right)\)
\(\Leftrightarrow x^2-x-1=2x^2+2x-x-1\)
\(\Leftrightarrow x^2-x-1-2x^2-x+1=0\)
\(\Leftrightarrow-x^2-2x=0\)
\(\Leftrightarrow-x\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Vậy: S={0;-2}
3x2+2x=0
<=>x(3x+2)=0
<=>x=0 hoặc 3x+2=0
từ đó bạn giải ra x thuộc{0;-2/3}
chúc bạn học tốt và nhớ tích đúng cho mình
\(a,2\left(x+1\right)=4-x\\ =>2x+2-4+x=0\\ =>3x-2=0\\ =>x=\dfrac{2}{3}\\ b,x^2-3x+2=0\\ =>x^2-2x-x+2=0\\ =>x\left(x-2\right)-\left(x-2\right)=0\\ =>\left(x-1\right)\left(x-2\right)=0\\ =>\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\\ =>\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
`2(x+1)=4-x`
`<=> 2x+2=4-x`
`<=> 2x+x=4-2`
`<=> 3x=2`
`<=>x=2/3`
`------`
`x^2-3x+2=0`
`<=>x^2-2x-x+2=0`
`<=> (x^2-2x)-(x-2)=0`
`<=> x(x-2)-(x-2)=0`
`<=>(x-2)(x-1)=0`
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)
ĐKXĐ: \(-\dfrac{1}{3}\le x\le4\)
\(\Leftrightarrow x+5=\sqrt{3x+1}+2\sqrt{4-x}\)
Ta có:
\(VP=1.\sqrt{3x+1}+2.\sqrt{4-x}\le\dfrac{1}{2}\left(1+3x+1\right)+\dfrac{1}{2}\left(4+4-x\right)=x+5\)
\(\Rightarrow VP\le VT\)
Dấu "=" xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}\sqrt{3x+1}=1\\\sqrt{4-x}=2\end{matrix}\right.\) \(\Leftrightarrow x=0\)
\(\text{Δ}=1^2-4\cdot\left(-3\right)\cdot\left(-1\right)=1-4\cdot3=-11< 0\)
Do đó: Phương trình vô nghiệm
Ta có:\(\Delta=1^2-4\left(-3\right)\left(-1\right)=1-12=-11< 0\)
Vậy pt vô nghiệm