Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) \(\dfrac{x}{x-2}+\dfrac{x}{x+2}=\dfrac{4x}{x^2-4}.ĐKXĐ:x\ne2;-2\)
<=>\(\dfrac{x\left(x+2\right)}{x^2-4}+\dfrac{x\left(x-2\right)}{x^2-4}=\dfrac{4x}{x^2-4}\)
<=>x2+2x+x2-2x=4x
<=>2x2-4x=0
<=>2x(x-2)=0
<=>\(\left[{}\begin{matrix}2x=0< =>x=0\\x-2=0< =>x=2\left(loại\right)\end{matrix}\right.\)
Vậy pt trên có nghiệm là S={0}
d) 11x-9=5x+3
<=>11x-5x=9+3
<=>6x=12
<=>x=2
Vậy pt trên có nghiệm là S={2}
e) (2x+3)(3x-4) =0
<=> \(\left[{}\begin{matrix}2x+3=0< =>x=\dfrac{-3}{2}\\3x-4=0< =>x=\dfrac{4}{3}\end{matrix}\right.\)
Vậy pt trên có tập nghiệm là S={\(\dfrac{-3}{2};\dfrac{4}{3}\)}
a) 5x+9 =2x
<=> 5x-2x=9
<=> 3x=9
<=> x=3
Vậy pt trên có nghiệm là S={3}
b) (x+1)(4x-3)=(2x+5)(x+1)
<=> (x+1)(4x-3)-(2x+5)(x+1)=0
<=>(x+1)(2x-8)=0
<=>\(\left[{}\begin{matrix}x+1=0< =>x=-1\\2x-8=0< =>2x=8< =>x=4\end{matrix}\right.\)
Vậy pt trên có tập nghiệm là S={-1;4}
\(x^4+2x^3+5x^2+4x-12=0\)
\(\Leftrightarrow\)\(x^4-x^3+3x^3-3x^2+8x^2-8x+12x-12=0\)
\(\Leftrightarrow\)\(x^3\left(x-1\right)+3x^2\left(x-1\right)+8x\left(x-1\right)+12\left(x-1\right)=0\)
\(\Leftrightarrow\)\(\left(x^3+3x^2+8x+12\right)\left(x-1\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=0\\x^3+3x^2+8x+12=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x^3+2x^2+x^2+2x+6x+12=0\end{cases}}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1\\\left(x+2\right)\left(x^2+x+6\right)=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\x=-2\\x^2+x+6=0\left(1\right)\end{cases}}\)
Giải pt ( 1 ) \(x^2+\frac{1}{2}x.2+\frac{1}{4}+\frac{23}{4}=0\)
\(\Leftrightarrow\)\(\left(x+\frac{1}{2}\right)^2+\frac{23}{4}=0\)suy ra pt ( 1 ) vô nghiệm
Vậy pt có 2 nghiệm là x = 1 ; x = -2
x4 + 2x3 + 5x2 + 4x - 10 = 0
x4 - x3 + 3x3 - 3x2 + 8x2 - 8x + 12x - 12 = 0
<=> x3(x - 1) + 3x2(x - 1) + 8x(x - 1) + 12(x - 1) = 0
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^3+3x^2+8x+12=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x^3+2x^2+x^2+2x+6x+10=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\\left(x+2\right)+\left(x^2+x+6\right)=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\x=-2\\x^2+x+6=0\left(1\right)\end{cases}}\)
Giải (1) \(x^2+\frac{1}{2}x.2+\frac{1}{4}+\frac{23}{4}=0\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{23}{4}>0\Rightarrow\text{PT}\left(1\right)\)Vô nghiệm
=> PT có 2 nghiệm: \(\hept{\begin{cases}x=1\\x=-2\end{cases}}\)
Ta có: 5x + 3x2 = 0
<=> x(3x + 5) = 0
<=> \(\orbr{\begin{cases}x=0\\3x+5=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=0\\x=-\frac{5}{3}\end{cases}}\) Vậy S = {0; -5/3)
5(x2 - 2x) = (3 + 5x)(x - 1)
<=> 5x2 - 10x = 5x2 - 2x - 3
<=> 5x2 - 10x - 5x2 + 2x = -3
<=> -8x = -3
<=> x = 3/8 Vậy S = {3/8}
(4x + 3)2 = 4(x - 1)2
<=> (4x + 3)2 - (2x - 2)2 = 0
<=> (4x + 3 - 2x + 2)(4x +3 + 2x - 2) = 0
<=> (2x + 5)(6x + 1) = 0
<=> \(\orbr{\begin{cases}2x+5=0\\6x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-\frac{5}{2}\\x=-\frac{1}{6}\end{cases}}\) Vậy S = {-5/3; -1/6}
a) 5x + 3.x2 = 0
<=>x . ( 5 + 3x ) = 0
<=> \(\orbr{\begin{cases}x=0\\5+3.x=0\end{cases}}\)
<=>\(\orbr{\begin{cases}x=0\\z=-\frac{5}{3}\end{cases}}\)
Nghiệm cuối cùng là :{ 0;\(-\frac{5}{3}\)}
b) 5.( x2 - 2.x ) = ( 3 + 5.x ) . ( x- 1 )
<=>5.x2 - 10.x = 3.x -3 + 5.x2 - 5.x
<=> -10.x = 3.x - 3-5.x
<=> -10.x = -2.x - 3
<=> -8.x = -3
<=> x = \(\frac{3}{8}\)
Vậy x = \(\frac{3}{8}\)
c) ( 4x + 3 )2 = 4. ( x - 1 )2
<=> 16.x2 + 24.x + 9 = 4.( x2 -2.x + 1 )
<=> 16.x2+24.x + 9 = 4.x2 -8.x + 4
<=> 16.x2 +24.x + 9 -4.x2 + 8.x - 4= 0
<=> 12.x2 + 32.x + 5 = 0
<=> 12.x2 + 30.x + 2.x + 5 = 0
<=> 6.x . ( 2.x + 5 ) + 2.x + 5 =0
<=> ( 2.x + 5 ) . ( 6.x + 1 ) =0
<=> \(\orbr{\begin{cases}2.x+5=0\\6.x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-\frac{5}{2}\\x=-\frac{1}{6}\end{cases}}\)
Nghiệm cuối cùng là : { \(-\frac{5}{2};-\frac{1}{6}\)}
\(4x-\dfrac{2}{3}=0\\ \Leftrightarrow4x=\dfrac{2}{3}\\ \Leftrightarrow x=\dfrac{\dfrac{2}{3}}{4}=\dfrac{2}{12}=\dfrac{1}{6}\\ \Rightarrow S=\left\{\dfrac{1}{6}\right\}\\ 3-\dfrac{3}{5}x=0\\ \Leftrightarrow\dfrac{3}{5}x=3\\ \Leftrightarrow x=\dfrac{3}{\dfrac{3}{5}}=5\\ \Rightarrow S=\left\{5\right\}\\ 2x+3=5\\ \Leftrightarrow2x=5-3=2\\ \Leftrightarrow x=\dfrac{2}{2}=1\\ \Rightarrow S=\left\{1\right\}\)
a, 4x = 2/3 <=> x = 1/6
b, 3/5x = 3 <=> x = 5
c, 2x = 2 <=> x = 1
\(a,2x-5=-x+4\\ \Leftrightarrow3x=9\\ \Leftrightarrow x=3\\ b,\left(4x-10\right)\left(25+5x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}4x-10=0\\25+5x=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-5\end{matrix}\right.\\ c,\dfrac{x}{3}-\dfrac{2x+1}{2}=\dfrac{x}{6}-x\\ \Leftrightarrow\dfrac{2x}{6}-\dfrac{3\left(2x+1\right)}{6}-\dfrac{x}{6}+\dfrac{6x}{6}=0\\ \Leftrightarrow2x-6x-3-x+6x=0\\ \Leftrightarrow x-3=0\\ \Leftrightarrow x=3\)
d, ĐKXĐ:\(x\ne-2,x\ne3\)
\(1+\dfrac{x}{3-x}=\dfrac{5x}{\left(x+2\right)\left(3-x\right)}+\dfrac{2}{x+2}\\ \Leftrightarrow\dfrac{\left(x+2\right)\left(3-x\right)}{\left(x+2\right)\left(3-x\right)}+\dfrac{x\left(x+2\right)}{\left(x+2\right)\left(3-x\right)}-\dfrac{5x}{\left(x+2\right)\left(3-x\right)}-\dfrac{2\left(3-x\right)}{\left(x+2\right)\left(3-x\right)}=0\\ \Leftrightarrow\dfrac{-x^2+x+6}{\left(x+2\right)\left(3-x\right)}+\dfrac{x^2+2x}{\left(x+2\right)\left(3-x\right)}-\dfrac{5x}{\left(x+2\right)\left(3-x\right)}-\dfrac{6-2x}{\left(x+2\right)\left(3-x\right)}=0\)
\(\Leftrightarrow\dfrac{-x^2+x+6+x^2+2x-5x-6+2x}{\left(x+2\right)\left(3-x\right)}=0\\ \Rightarrow0=0\left(luôn.đúng\right)\)
Mình khuyên bạn thế này :
Bạn nên tách những câu hỏi ra
Như vậy các bạn sẽ dễ giúp
Và cũng có nhiều bạn giúp hơn !
Bài 1.
a) ( x - 3 )( x + 7 ) = 0
<=> x - 3 = 0 hoặc x + 7 = 0
<=> x = 3 hoặc x = -7
Vậy S = { 3 ; -7 }
b) ( x - 2 )2 + ( x - 2 )( x - 3 ) = 0
<=> ( x - 2 )( x - 2 + x - 3 ) = 0
<=> ( x - 2 )( 2x - 5 ) = 0
<=> x - 2 = 0 hoặc 2x - 5 = 0
<=> x = 2 hoặc x = 5/2
Vậy S = { 2 ; 5/2 }
c) x2 - 5x + 6 = 0
<=> x2 - 2x - 3x + 6 = 0
<=> x( x - 2 ) - 3( x - 2 ) = 0
<=> ( x - 2 )( x - 3 ) = 0
<=> x - 2 = 0 hoặc x - 3 = 0
<=> x = 2 hoặc x = 3
1
a (9+x)=2 ta có (9+x)= 9+x khi 9+x >_0 hoặc >_ -9
(9+x)= -9-x khi 9+x <0 hoặc x <-9
1)pt 9+x=2 với x >_ -9
<=> x = 2-9
<=> x=-7 thỏa mãn điều kiện (TMDK)
2) pt -9-x=2 với x<-9
<=> -x=2+9
<=> -x=11
x= -11 TMDK
vậy pt có tập nghiệm S={-7;-9}
các cau con lai tu lam riêng nhung cau nhan với số âm thi phan điều kiện đổi chiều nha vd
nhu cau o trên mk lam 9+x>_0 hoặc x>_0
với số âm thi -2x>_0 hoặc x <_ 0 nha
Ta có : 2x4 - 5x3 + 4x2 -5x +2 =0
<=> ( 2x4 +4x2 +2) - ( 5x3 + 5x)=0
<=> 2( x4+2x2+1) - 5x( x2 +1) =0
<=> 2 ( x2+1)2 - 5x( x2+1) =0
<=> (x2 +1) ( 2( x2 +1) -5x ) =0
<=> 2( x2 +1) -5x =0 ( vì x2 >_ 0 => x2 +1 >0)
<=>2x2 +2 -5x =0
<=> 2x2 +2 -4x-x =0
<=> (2x2 -4x) +( 2-x) =0
<=> 2x(x-2) -( x-2) =0
<=> (x-2) (2x-1) = 0
<=> x-2 =0 <=> x= 2 hoặc 2x-1 =0 <=> x= 1/2
vậy x= 2 hoặc x= 1/2
- học tốt -