K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2016

\(2x^2-8x-3\sqrt{x^2-4x-5}=12\) (Điều kiện xác định : \(\hept{\begin{cases}x\le2-\sqrt{10}\\x\ge5\end{cases}}\))

\(\Leftrightarrow2\left(x^2-4x-5\right)-3\sqrt{x^2-4x-5}-2=0\)

Đặt \(t=\sqrt{x^2-4x-5},t\ge0\) , phương trình trên trở thành : \(2t^2-3t-2=0\Leftrightarrow\left(t-2\right)\left(2t+1\right)=0\Leftrightarrow\orbr{\begin{cases}t=2\left(\text{nhận}\right)\\t=-\frac{1}{2}\left(\text{loại}\right)\end{cases}}\)

Với t = 2 ta có phương trình \(x^2-4x-5=4\Leftrightarrow x^2-4x-9=0\Leftrightarrow\orbr{\begin{cases}x=2+\sqrt{13}\left(\text{nhận}\right)\\x=2-\sqrt{13}\left(\text{nhận}\right)\end{cases}}\)

Kết luận : Tập nghiệm của phương trình : \(S=\left\{2-\sqrt{13};2+\sqrt{13}\right\}\)

NV
19 tháng 1 2022

ĐKXĐ: \(x\ge0\)

\(\sqrt{2x^2+8x+5}-4\sqrt{x}+\sqrt{2x^2-4x+5}-2\sqrt{x}=0\)

\(\Leftrightarrow\dfrac{2x^2-8x+5}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-8x+5}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)

\(\Leftrightarrow\left(2x^2-8x+5\right)\left(\dfrac{1}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{1}{\sqrt{2x^2-4x+5}+2\sqrt{x}}\right)=0\)

\(\Leftrightarrow2x^2-8x+5=0\)

\(\Leftrightarrow...\)

24 tháng 6 2019

\(vt=\sqrt{-\left(x-2\right)^2+2}+\sqrt{-2\left(x-2\right)^2+3}\)

=>\(VT=< \sqrt{2}+\sqrt{3}\)

xảy ra dấu = khi và chỉ khi x=2

24 tháng 6 2019

thiếu 1 nghiệm nx bn nhé

15 tháng 3 2020

Các bước làm:

Thử nghiệm: x = 2 là nghiệm 

------> Thử xem các cách làm tất nhiên là không thể bình phương  -----> Như vậy thường thì cô sẽ nghĩ ra hai cách là liên hợp và đặt ẩn phụ

+) Cách liên hợp: Căn đầu tiên thay 2 vào kết quả 1 ; căn thứ 2 thay 2 vào đc kết quả là 3

-----------------------------------------------------------------------------------------------------------------------

Giải: ĐK: \(1\le x\le3\) ( không cần thiết phải giải luôn điều kiện ra như thế nhé!

 \(\sqrt{-x^2+4x-3}+\sqrt{-2x^2+8x+1}=x^3-4x^2+4x+4\)

<=> \(\sqrt{-x^2+4x-3}-1+\sqrt{-2x^2+8x+1}-3=x^3-4x^2+4x+4-4\)

<=> \(\frac{-\left(x-2\right)^2}{\sqrt{-x^2+4x-3}+1}+\frac{-2\left(x-2\right)^2}{\sqrt{-2x^2+8x+1}+3}=x\left(x-2\right)^2\) ( hình như là đẹp)

<=> \(\left(x-2\right)^2\left[x+\frac{1}{\sqrt{-x^2+4x-3}+1}+\frac{2}{\sqrt{-2x^2+8x+1}+3}\right]=0\)( cái trong ngoặc vuông rõ ràng là > 0 với mọi  \(1\le x\le3\))

<=> x - 2 = 0 

<=> x = 2 thỏa mãn đk

29 tháng 5 2020

ĐKXĐ : ....

PT \(\Leftrightarrow\sqrt{-x^2+4x-3}-1+\sqrt{-2x^2+8x+1}-3=x\left(x^2-4x+4\right)\)

\(\Leftrightarrow\frac{-x^2+4x-4}{\sqrt{-x^2+4x-3}+1}+\frac{-2x^2+8x-8}{\sqrt{-2x^2+8x+1}+3}=x\left(x-2\right)^2\)

\(\Leftrightarrow\frac{\left(x-2\right)^2}{\sqrt{-x^2+4x-3}+1}+\frac{2\left(x-2\right)^2}{\sqrt{-2x^2+8x+1}+3}+x\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(x-2\right)^2\left(\frac{1}{\sqrt{-x^2+4x-3}+1}+\frac{2}{\sqrt{-2x^2+8x+1}+3}+x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x-2\right)^2=0\\\frac{1}{\sqrt{-x^2+4x-3}+1}+\frac{2}{\sqrt{-2x^2+8x+1}+3}+x=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\\frac{1}{\sqrt{-x^2+4x-3}+1}+\frac{2}{\sqrt{-2x^2+8x+1}+3}+x>0\left(loai\right)\end{cases}}\)

23 tháng 8 2020

Bạn Thanh Tùng DZ ơi sao trường hợp 2 lại loại vậy

Chưa có điều kiện của x mà

16 tháng 4 2020

Điều kiện 1 =<x=<3

\(\sqrt{-x^2+4x-3}+\sqrt{-2x^2+8x+1}=x^3-4x^2+4x+4\)

\(\Leftrightarrow\sqrt{-x^2+4x-3}-1+\sqrt{-2x^2+8x+1}-3=x\left(x^2-4x+4\right)\)

\(\Leftrightarrow\frac{-x^2+4x-4}{\sqrt{-x^2+4x-3}+1}+\frac{-2x^2+8x-8}{\sqrt{-2x^2+8x+x}+3}=x\left(x-2\right)^2\)

\(\Leftrightarrow x\left(x-2\right)^2+\frac{\left(x-2\right)^2}{\sqrt{-x^2+4x-3}+1}+\frac{2\left(x-2\right)^2}{\sqrt{-2x^2+8x+x}+3}=x\left(x-2\right)^2\)

\(\Leftrightarrow\left(x-2\right)^2\left(x+\frac{1}{\sqrt{-x^2+4x-3}+1}+\frac{2\left(x-2\right)^2}{\sqrt{-2x^2+8x+1}+3}\right)=0\)

\(\Leftrightarrow\left(x-2\right)^2=0\left(x+\frac{1}{\sqrt{-x^2+4x-3}+1}+\frac{2}{\sqrt{-2x^2+8x+1}+3}>0\right)\)

<=> x=2(tmđk)