K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2020

Đk: \(x^3+1\ge0\Leftrightarrow x\ge-1\left(1\right)\)

Đặt \(a=\sqrt{x+1};b=\sqrt{x^2-x+1}\left(a\ge0,b>0\right)\left(2\right)\Rightarrow a^2+b^2=x^2+2\)

Khi đó pt đã cho trở thành: \(10ab=3\left(a^2+b^2\right)\Leftrightarrow\left(a-3b\right)\left(3a-b\right)=0\Leftrightarrow\orbr{\begin{cases}a=3b\\b=3a\end{cases}}\)

+) Nếu a=3b thì từ (2) \(\Rightarrow\sqrt{x+1}=3\sqrt{x^2-x+1}\Leftrightarrow9x^2-10x+8=0\)( vô nghiệm)

+) Nếu b=3a thì từ (2) \(\Rightarrow3\sqrt{x+1}=\sqrt{x^2-x+1}\Leftrightarrow9x+9=x^2-x+1\Leftrightarrow x^2-10x-8=0\)

Pt có 2 nghiệm \(x_1=5+\sqrt{33};x_2=5-\sqrt{33}\left(tm\left(1\right)\right)\)

a: Để phương trình có nghiệm duy nhất thì \(\left(m-3\right)\left(m+2\right)< >0\)

hay \(m\notin\left\{3;-2\right\}\)

Để phương trình vô nghiệm thì \(\left\{{}\begin{matrix}\left(m-3\right)\left(m+2\right)=0\\\left(m-3\right)\left(m-1\right)< >0\end{matrix}\right.\Leftrightarrow m=-2\)

Để phương trình có vô số nghiệm thì m=3

a: Để phương trình có nghiệm duy nhất thì \(\left(m-3\right)\left(m+2\right)\ne0\)

hay \(m\notin\left\{3;-2\right\}\)

Để phương trình có vô số nghiệm thì \(m-3=0\)

hay m=3

Để phương trình vô nghiệm thì \(\left\{{}\begin{matrix}\left(m-3\right)\left(m+2\right)=0\\m^2-4m+3< >0\end{matrix}\right.\Leftrightarrow m=-2\)

11 tháng 1 2022

\(\dfrac{2x+1}{3x+2}=\dfrac{x-1}{x-2}\) (đk: x≠ 2; \(-\dfrac{2}{3}\) )

⇔ \(\left(x-2\right)\left(2x+1\right)=\left(x-1\right)\left(3x+2\right)\)

⇔ \(2x^2+x-4x-2=3x^2+2x-3x-2\)

⇔ \(3x^2-x-2-2x^2+3x+2=0\)

⇔ \(x^2+2x=0\)

⇔ \(x\left(x+2\right)=0\)

⇒ \(\left[{}\begin{matrix}x=0\left(TM\right)\\x=-2\left(TM\right)\end{matrix}\right.\)

Vậy \(S=\left\{0;-2\right\}\)

\(\Leftrightarrow3x^2-3x+2x-2=2x^2-4x+x-2\)

\(\Leftrightarrow x^2+2x=0\)

=>x(x+2)=0

=>x=0 hoặc x=-2

11 tháng 11 2021

1: \(\Leftrightarrow x^2-6x=x^2-7x+10\)

hay x=10

NV
16 tháng 4 2021

\(\Leftrightarrow x\left(x-2\right)\left(x^2+x-6\right)\le0\)

\(\Leftrightarrow x\left(x-2\right)^2\left(x+3\right)\le0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\-3\le x\le0\end{matrix}\right.\)

7 tháng 1 2017

bạn viết rõ hơn đi

NV
15 tháng 3 2022

Pt có 2 nghiệm trái dấu khi:

\(ac< 0\Leftrightarrow2\left(m+3\right)< 0\)

\(\Rightarrow m< -3\)

b: Trường hợp 1: x<-3

Pt sẽ là \(x^2+6x-x-3+10=0\)

\(\Leftrightarrow x^2+5x+7=0\)

\(\Delta=5^2-4\cdot1\cdot7=-3< 0\)

Do đó: Phương trình vô nghiệm

Trường hợp 2: x>=-3

Pt sẽ là \(x^2+6x+3+x+3+10=0\)

\(\Leftrightarrow x^2+7x+16=0\)

\(\Delta=7^2-4\cdot1\cdot16=49-64=-15< 0\)

Do đó: Phương trình vô nghiệm