K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2016

1. (x;y;z) = (2;2;2) . Đó là hpt đối xứng

2.(x;y;z) = (1;1;1) . Đây cũng là hpt đối xứng

\(\Leftrightarrow x+y+z-2\sqrt{x}-2\sqrt{y-1}-2\sqrt{z-2}=0\)

\(\Leftrightarrow\left[\left(\sqrt{x}\right)^2-2.\sqrt{x}.1+1^2\right]+\left[\left(\sqrt{y-1}\right)^2+2.\sqrt{y-1}.1+1^2\right]+\left[\left(\sqrt{z-2}\right)^2+2.\sqrt{z-x}.1+1^2\right]-1+1=0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-1\right)^2+\left(\sqrt{z-2}-1\right)^2=0\)

\(\Leftrightarrow\sqrt{x}-1=0\)

\(\sqrt{y-1}-1=0\)

\(\sqrt{z-2}-1=0\)

\(\Leftrightarrow x=1;y=2;z=3\)

17 tháng 1 2017

Bài 1:Áp dụng C-S dạng engel

\(\frac{3}{xy+yz+xz}+\frac{2}{x^2+y^2+z^2}=\frac{6}{2\left(xy+yz+xz\right)}+\frac{2}{x^2+y^2+z^2}\)

\(\ge\frac{\left(\sqrt{6}+\sqrt{2}\right)^2}{\left(x+y+z\right)^2}=\left(\sqrt{6}+\sqrt{2}\right)^2>14\)

28 tháng 11 2016

để tui lm cho 

áp dụng đẳng thức \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

<=> \(1-3xyz=1\left(1-xy-yz-zx\right)\)

<=> \(3xyz=xy+yz+zx\)

mặt khác ta có 1=(x+y+z)^2=x^2+y^2+z^2+2xy+2yz+2zx

<=> 1=1+2(xy+yz+zx)

<=> xy+yz+zx=0 

<=> 3xyz=0 

<=> \(\hept{\begin{cases}x=0\\y=0\\z=0\end{cases}}\)

đến đấy cậu tự lm nốt nhé 

28 tháng 11 2016

mà pn tuấn anh j ơi ,, bài này mk tìm đc 3 cặp nghiệm luôn á (x;y;z)=(0;0;1);(0;1;0);(1;0;0) 

pn giải cụ thể ra giúp mk vs