Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3) ta xét phương trình thứ nhất
\(x-\frac{1}{x}=y-\frac{1}{y}\)
<=>\(x-y-\frac{1}{x}+\frac{1}{y}=0\)
<=>\(x-y-\left(\frac{1}{x}-\frac{1}{y}\right)=0\)
<=>\(x-y-\left(\frac{y-x}{xy}\right)=0\)
<=>\(\left(x-y\right)\left(1+\frac{1}{xy}\right)=0\)
<=>\(x=y\) hoặc xy=-1
Với x=y thay vào phương trình thứ hai ta có
\(2x=x^3+1
\)
<=> \(x^3-2x+1=0\)
<=>\(x^3-x^2+x^2-x-x+1=0\)
<=>\(\left(x-1\right)\left(x^2+x-1\right)=0\)
<=> \(x=1\) hoặc \(x^2+x-1=0\)
\(x^2+x-1=0\) <=> \(x=\frac{-1+\sqrt{5}}{2}\)
hoặc \(x=\frac{-1-\sqrt{5}}{2}\)
Đối với xy=-1 thì y=-1/x thay vào phương trình 2 giải bình thường
Lời giải:
\(\left\{\begin{matrix} x+\frac{1}{y}=2(1)\\ y+\frac{1}{z}=2(2)\\ z+\frac{1}{x}=2(3)\end{matrix}\right.\)
Lấy \((1)-(2); (2)-(3); (3)-(1)\) ta thu được:
\(\left\{\begin{matrix} x-y+\frac{z-y}{yz}=0\\ y-z+\frac{x-z}{xz}=0\\ z-x+\frac{y-x}{xy}=0\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} x-y=\frac{y-z}{yz}\\ y-z=\frac{z-x}{xz}\\ z-x=\frac{x-y}{xy}\end{matrix}\right.\)
\(\Rightarrow (x-y)(y-z)(z-x)=\frac{(x-y)(y-z)(z-x)}{(xyz)^2}\)
\(\Leftrightarrow (x-y)(y-z)(z-x)(1-\frac{1}{xyz})(1+\frac{1}{xyz})=0\)
TH1: \(x-y=0\Leftrightarrow x=y\Rightarrow x+\frac{1}{x}=2\)
\(\Rightarrow x^2-2x+1=0\Leftrightarrow (x-1)^2=0\Leftrightarrow x=1\rightarrow y=1\)
Thay vào PT\((2)\Rightarrow 1+\frac{1}{z}=2\rightarrow z=1\)
Ta thu được \((x,y,z)=(1,1,1)\)
TH2: \(y-z=0; z-x=0\) hoàn toàn giống TH1 ta cũng có \((x,y,z)=(1,1,1)\)
TH3: \(1-\frac{1}{xyz}=1\Rightarrow xyz=1\)
Thay vào PT(1) và (2)
\(\left\{\begin{matrix} x+\frac{1}{y}=2\\ y+xy=2\end{matrix}\right.\Rightarrow \left\{\begin{matrix} xy+1=2y\\ xy=2-y\end{matrix}\right.\)
\(\Rightarrow 2-y+1=2y\Leftrightarrow y=1\Rightarrow x=z=1\)
TH4: \(1+\frac{1}{xyz}=0\Leftrightarrow xyz=-1\)
Thay vào PT (1) và (2):
\(\left\{\begin{matrix} x+\frac{1}{y}=2\\ y-xy=2\end{matrix}\right.\Rightarrow \left\{\begin{matrix} xy+1=2y\\ xy=y-2\end{matrix}\right.\)
\(\Rightarrow y-2+1=2y\Leftrightarrow y=-1\)
\(\Rightarrow x+\frac{1}{-1}=2\Rightarrow x=3; -1+\frac{1}{z}=2\Rightarrow z=\frac{1}{3}\)
Thử vào PT(3) thấy không đúng (loại)
Vậy \((x,y,z)=(1,1,1)\)
\(\left\{{}\begin{matrix}2x^2=y+\frac{1}{y}\left(1\right)\\2y^2=x+\frac{1}{x}\left(2\right)\end{matrix}\right.\)
Trừ theo vế 2 phương trình ta được :
\(2x^2-2y^2=y+\frac{1}{y}-x-\frac{1}{x}\)
\(\Leftrightarrow2\left(x-y\right)\left(x+y\right)+\left(x-y\right)-\frac{x-y}{xy}=0\)
\(\Leftrightarrow\left(x-y\right)\left(2x+2y+1-\frac{1}{xy}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y\\2x+2y+1-\frac{1}{xy}=0\end{matrix}\right.\)
+) TH1: \(x=y\)
\(\left(1\right)\Leftrightarrow2x^2=x+\frac{1}{x}\)
\(\Leftrightarrow2x^3-x^2-1=0\)
\(\Leftrightarrow2x^3-2x^2+x^2-1=0\)
\(\Leftrightarrow2x^2\left(x-1\right)+\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x^2+x+1\right)=0\)
\(\Leftrightarrow x=1\)
\(\Leftrightarrow x=y=1\)
+) TH2: \(2x+2y+1-\frac{1}{xy}=0\)
Đặt \(x+y=a;xy=b\)
\(\Leftrightarrow2a+1-\frac{1}{b}=0\)
\(\Leftrightarrow2a^2b+ab-a=0\) (*)
Lấy \(\left(1\right)+\left(2\right)\Leftrightarrow2x^2+2y^2=x+y+\frac{1}{x}+\frac{1}{y}\)
\(\Leftrightarrow2\left[\left(x+y\right)^2-2xy\right]=x+y+\frac{x+y}{xy}\)
\(\Leftrightarrow2\left(a^2-b\right)=a+\frac{a}{b}\)
\(\Leftrightarrow2a^2b-4b^2=ab+a\)
\(\Leftrightarrow2a^2b+ab-a-4b^2-2ab=0\)
\(\Leftrightarrow4b^2+2ab=0\) ( theo (*) )
\(\Leftrightarrow b\left(2b+a\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}xy=0\left(3\right)\\2xy+x+y=0\left(4\right)\end{matrix}\right.\)
Vì \(x;y\ne0\) nên \(\left(3\right)\) vô nghiệm.
\(\left(4\right)\Leftrightarrow y=\frac{-x}{2x+1}\)
Khi đó \(\left(2\right)\Leftrightarrow2\cdot\left(\frac{-x}{2x+1}\right)^2=x+\frac{1}{x}\)
\(\Leftrightarrow4x^4+2x^3+5x^2+4x+1=0\)
\(\Leftrightarrow x^4+2x^3+x^2+4x^2+4x+1+3x^4=0\)
\(\Leftrightarrow\left(x^2+x\right)^2+\left(2x+1\right)^2+3x^4=0\) ( vô nghiệm )
Vậy...
ĐKXĐ: \(xy\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x^2y=y^2+1\\2xy^2=x^2+1\end{matrix}\right.\)
Chia vế cho vế ta được: \(\frac{x}{y}=\frac{y^2+1}{x^2+1}\Rightarrow x^3+x=y^3+y\)
\(\Rightarrow x^3-y^3+x-y=0\)
\(\Leftrightarrow\left(x-y\right)\left[\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}+1\right]=0\)
\(\Rightarrow x=y\)
Thay vào ta được: \(2x^3=x^2+1\Leftrightarrow2x^3-x^2-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x^2+x+1\right)=0\)
Dễ dàng nhận ra x;y;z dương.
\(y^2+1=x+\frac{1}{x}\ge2\Rightarrow y^2\ge1\Rightarrow y\ge\frac{1}{y}\)
Tương tự ta có: \(x\ge\frac{1}{x};z\ge\frac{1}{z}\Rightarrow x+y+z\ge\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\) (1)
Lại có \(x+\frac{1}{x}=y^2+1\ge2y\)
Tương tự: \(y+\frac{1}{y}\ge2z;z+\frac{1}{z}\ge2x\Rightarrow x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge2\left(x+y+z\right)\)
\(\Rightarrow x+y+z\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\) (2)
Từ (1) và (2) \(\Rightarrow x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
Đẳng thức xảy ra khi \(x=y=z=1\)