Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c. ĐKXĐ: ...
\(x^2+y^2+2xy-2xy+\dfrac{2xy}{x+y}-1=0\)
\(\Leftrightarrow\left(x+y\right)^2-1-2xy\left(1-\dfrac{1}{x+y}\right)=0\)
\(\Leftrightarrow\left(x+y-1\right)\left(x+y+1\right)-\dfrac{2xy\left(x+y-1\right)}{x+y}=0\)
\(\Leftrightarrow\left(x+y-1\right)\left(x+y+1-\dfrac{2xy}{x+y}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y=1\\x^2+y^2+x+y=0\left(vô-nghiệm\right)\end{matrix}\right.\)
Thế \(y=1-x\) xuống pt dưới:
\(\sqrt{x+1-x}=x^2-\left(1-x\right)\)
\(\Leftrightarrow x^2+x-2=0\Rightarrow\left[{}\begin{matrix}x=1\Rightarrow y=0\\x=-2\Rightarrow y=3\end{matrix}\right.\)
d.
ĐKXĐ: \(x>-2;y>1;x+y>0\)
\(\left\{{}\begin{matrix}\sqrt{\dfrac{x+y}{x+2}}+\sqrt{\dfrac{x+y}{y-1}}=2\\2\left(x+y\right)^2=\left(x+2\right)^2+\left(y-1\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{\dfrac{x+y}{x+2}}+\sqrt{\dfrac{x+y}{y-1}}=2\\\left(\dfrac{x+2}{x+y}\right)^2+\left(\dfrac{y-1}{x+y}\right)^2=2\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}\sqrt{\dfrac{x+y}{x+2}}=a>0\\\sqrt{\dfrac{x+y}{y-1}}=b>0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=2\\\dfrac{1}{a^4}+\dfrac{1}{b^4}=2\end{matrix}\right.\)
Ta có: \(\dfrac{1}{a^4}+\dfrac{1}{b^4}\ge\dfrac{1}{8}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^4\ge\dfrac{1}{8}\left(\dfrac{4}{a+b}\right)^4=\dfrac{1}{8}.\left(\dfrac{4}{2}\right)^4=2\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=1\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x+y}{x+2}=1\\\dfrac{x+y}{y-1}=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)
1.
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y+x^3y+xy^2+xy=-\dfrac{5}{4}\\x^4+y^2+xy\left(1+2x\right)=-\dfrac{5}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2+y\right)+xy+xy\left(x^2+y\right)=-\dfrac{5}{4}\\\left(x^2+y\right)^2+xy=-\dfrac{5}{4}\end{matrix}\right.\left(1\right)\)
Đặt \(\left\{{}\begin{matrix}x^2+y=a\\xy=b\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}a+b+ab=-\dfrac{5}{4}\\a^2+b=-\dfrac{5}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-a^2-\dfrac{5}{4}-a\left(a^2+\dfrac{5}{4}\right)=-\dfrac{5}{4}\\b=-a^2-\dfrac{5}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^2-a^3-\dfrac{1}{4}a=0\\b=-a^2-\dfrac{5}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-a\left(a^2-a+\dfrac{1}{4}\right)=0\\b=-a^2-\dfrac{5}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a\left(a-\dfrac{1}{2}\right)^2=0\\b=-a^2-\dfrac{5}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=0\\b=-\dfrac{5}{4}\end{matrix}\right.\\\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=-\dfrac{3}{2}\end{matrix}\right.\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}a=0\\b=-\dfrac{5}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2+y=0\\xy=-\dfrac{5}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{\sqrt[3]{10}}{2}\\y=-\dfrac{5}{2\sqrt[3]{10}}\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=-\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2+y=\dfrac{1}{2}\\xy=-\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-\dfrac{3}{2}\end{matrix}\right.\)
Kết luận: Phương trình đã cho có nghiệm \(\left(x;y\right)\in\left\{\left(\dfrac{\sqrt[3]{10}}{2};-\dfrac{5}{2\sqrt[3]{10}}\right);\left(1;-\dfrac{3}{2}\right)\right\}\)
2.
\(\left\{{}\begin{matrix}\left(x+1\right)^3-16\left(x+1\right)=\left(\dfrac{2}{y}\right)^3-4\left(\dfrac{2}{y}\right)\\1+\left(\dfrac{2}{y}\right)^2=5\left(x+1\right)^2+5\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+1=u\\\dfrac{2}{y}=v\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u^3-16u=v^3-4v\\v^2=5u^2+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}u^3-v^3=16u-4v\\4=v^2-5u^2\end{matrix}\right.\)
\(\Rightarrow4\left(u^3-v^3\right)=\left(16u-4v\right)\left(v^2-5u^2\right)\)
\(\Leftrightarrow21u^3-5u^2v-4uv^2=0\)
\(\Leftrightarrow u\left(7u-4v\right)\left(3u+v\right)=0\Rightarrow\left[{}\begin{matrix}u=0\Rightarrow v^2=4\\u=\dfrac{4v}{7}\Rightarrow4=v^2-5\left(\dfrac{4v}{7}\right)^2\\v=-3u\Rightarrow4=\left(-3u\right)^2-5u^2\end{matrix}\right.\)
\(\Rightarrow...\)
HPT \(\Leftrightarrow\left\{{}\begin{matrix}3\left(x^2+y^2\right)+2xy+\dfrac{1}{\left(x-y\right)^2}=20\\\left(x-y\right)+\left(x+y\right)+\dfrac{1}{x-y}=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x+y\right)^2+\left(x-y\right)^2+\dfrac{1}{\left(x-y\right)^2}=20\\\left(x-y\right)+\left(x+y\right)+\dfrac{1}{x-y}=5\end{matrix}\right.\)
Đặt \(a=x+y;b=x-y\)
\(\Rightarrow\left\{{}\begin{matrix}2a^2+b^2+\dfrac{1}{b^2}=20\\a+b+\dfrac{1}{b}=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2a^2+\left(b+\dfrac{1}{b}\right)^2=22\\b+\dfrac{1}{b}=5-a\end{matrix}\right.\)
\(\Rightarrow2a^2+\left(a-5\right)^2=22\)
\(\)Đến đây thì dễ rồi tự làm nhé
a: \(\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{3}{y}=5\\\dfrac{1}{x}-\dfrac{4}{y}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{3}{y}=5\\\dfrac{2}{x}-\dfrac{8}{y}=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{11}{y}=11\\\dfrac{1}{x}-\dfrac{4}{y}=-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=1\\\dfrac{1}{x}=-3+\dfrac{4}{y}=-3+4=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
b: \(\left\{{}\begin{matrix}\dfrac{12}{x-3}-\dfrac{5}{y+2}=63\\\dfrac{8}{x-3}+\dfrac{15}{y+2}=-13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{36}{x-3}-\dfrac{15}{y+2}=189\\\dfrac{8}{x-3}+\dfrac{15}{y+2}=-13\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{44}{x-3}=176\\\dfrac{8}{x-3}+\dfrac{15}{y+2}=-13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-3=\dfrac{1}{4}\\\dfrac{15}{y+2}=-13-\dfrac{8}{x-3}=-13-32=-45\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{13}{4}\\y=-\dfrac{1}{3}-2=-\dfrac{7}{3}\end{matrix}\right.\)
ĐK : \(y\ne0\) Chia cả hai vế của phương trình thứ hai cho y3
\(\Rightarrow x^3+\dfrac{x^2}{y}+\dfrac{x}{y^2}+\dfrac{1}{y^3}=4\)
\(\Leftrightarrow x^2\left(x+\dfrac{1}{y}\right)+\dfrac{1}{y^2}\left(x+\dfrac{1}{y}\right)=4\)
\(\Leftrightarrow\left(x+\dfrac{1}{y}\right)\left(x^2+\dfrac{1}{y^2}\right)=4\)
HPT\(\Leftrightarrow\left\{{}\begin{matrix}x^2+\dfrac{1}{y^2}+x+\dfrac{1}{y}=4\\\left(x+\dfrac{1}{y}\right)\left(x^2+\dfrac{1}{y^2}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=4\\ab=4\end{matrix}\right.\)
Đến đây tự làm nha
b) ĐKXĐ: \(x,y\neq 0\).
Ta có: \(\left\{{}\begin{matrix}x-\dfrac{1}{x}=y-\dfrac{1}{y}\\2y=x^3+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=\dfrac{1}{x}-\dfrac{1}{y}\\2y=x^3+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=\dfrac{y-x}{xy}\\2y=x^3+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x-y=0\\xy=-1\end{matrix}\right.\\2y=x^3+1\end{matrix}\right.\).
Với x - y = 0 suy ra x = y. Do đó \(2x=x^3+1\Leftrightarrow\left(x-1\right)\left(x^2+x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1=y\left(TMĐK\right)\\x=\pm\dfrac{\sqrt{5}-1}{2}=y\left(TMĐK\right)\end{matrix}\right.\).
Với xy = -1 suy ra \(y=-\dfrac{1}{x}\). Do đó \(x^3+\dfrac{2}{x}+1=0\Rightarrow x^4+x+2=0\). Phương trình vô nghiệm do \(x^4+x+2=\left(x^2-\dfrac{1}{2}\right)^2+\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{2}>0\).
Vậy...
Lời giải:
\(\left\{\begin{matrix} x+\frac{1}{y}=2(1)\\ y+\frac{1}{z}=2(2)\\ z+\frac{1}{x}=2(3)\end{matrix}\right.\)
Lấy \((1)-(2); (2)-(3); (3)-(1)\) ta thu được:
\(\left\{\begin{matrix} x-y+\frac{z-y}{yz}=0\\ y-z+\frac{x-z}{xz}=0\\ z-x+\frac{y-x}{xy}=0\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} x-y=\frac{y-z}{yz}\\ y-z=\frac{z-x}{xz}\\ z-x=\frac{x-y}{xy}\end{matrix}\right.\)
\(\Rightarrow (x-y)(y-z)(z-x)=\frac{(x-y)(y-z)(z-x)}{(xyz)^2}\)
\(\Leftrightarrow (x-y)(y-z)(z-x)(1-\frac{1}{xyz})(1+\frac{1}{xyz})=0\)
TH1: \(x-y=0\Leftrightarrow x=y\Rightarrow x+\frac{1}{x}=2\)
\(\Rightarrow x^2-2x+1=0\Leftrightarrow (x-1)^2=0\Leftrightarrow x=1\rightarrow y=1\)
Thay vào PT\((2)\Rightarrow 1+\frac{1}{z}=2\rightarrow z=1\)
Ta thu được \((x,y,z)=(1,1,1)\)
TH2: \(y-z=0; z-x=0\) hoàn toàn giống TH1 ta cũng có \((x,y,z)=(1,1,1)\)
TH3: \(1-\frac{1}{xyz}=1\Rightarrow xyz=1\)
Thay vào PT(1) và (2)
\(\left\{\begin{matrix} x+\frac{1}{y}=2\\ y+xy=2\end{matrix}\right.\Rightarrow \left\{\begin{matrix} xy+1=2y\\ xy=2-y\end{matrix}\right.\)
\(\Rightarrow 2-y+1=2y\Leftrightarrow y=1\Rightarrow x=z=1\)
TH4: \(1+\frac{1}{xyz}=0\Leftrightarrow xyz=-1\)
Thay vào PT (1) và (2):
\(\left\{\begin{matrix} x+\frac{1}{y}=2\\ y-xy=2\end{matrix}\right.\Rightarrow \left\{\begin{matrix} xy+1=2y\\ xy=y-2\end{matrix}\right.\)
\(\Rightarrow y-2+1=2y\Leftrightarrow y=-1\)
\(\Rightarrow x+\frac{1}{-1}=2\Rightarrow x=3; -1+\frac{1}{z}=2\Rightarrow z=\frac{1}{3}\)
Thử vào PT(3) thấy không đúng (loại)
Vậy \((x,y,z)=(1,1,1)\)