K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(4xy^2\cdot x-\left(-12x^2y^2\right)\)

\(=4x^2y^2+12x^2y^2\)

\(=16x^2y^2\)

24 tháng 8 2021

\(a,x^3y^2-xy^2=xy^2\left(x^2-1\right)=xy^2\left(x-1\right)\left(x+1\right)\\ b,2x^3y^2+4x^2y^2+2xy^2=2xy^2\left(x^2+2x+1\right)=2xy^2\left(x+1\right)^2\\ c,3x^3y-12x^2y+12xy=2xy\left(x^2-4x+4\right)=2xy\left(x-2\right)^2\\ d,6x^3y+12x^2y^2+6xy^3=6xy\left(x^2+2xy+y^2\right)=6xy\left(x+y\right)^2\\ e,x^2\left(x-y\right)+y^2\left(y-x\right)=\left(x^2-y^2\right)\left(x-y\right)=\left(x-y\right)^2\left(x+y\right)\\ f,9x^2\left(x-2\right)-4y^2\left(x-2\right)=\left(9x^2-4y^2\right)\left(x-2\right)=\left(3x-2y\right)\left(3x+2y\right)\left(x-2\right)\)

Tick plz

 

a: \(x^3y^2-xy^2=xy^2\left(x^2-1\right)=xy^2\left(x-1\right)\left(x+1\right)\)

b: \(2x^3y^2+4x^2y^2+2xy^2=2xy^2\left(x^2+2x+1\right)=2xy^2\cdot\left(x+1\right)^2\)

c: \(3x^3y-12x^2y+12xy=3xy\left(x^2-4x+4\right)=3xy\cdot\left(x-2\right)^2\)

d: \(6x^3y+12x^2y^2+6xy^3=6xy\left(x^2+2xy+y^2\right)=6xy\cdot\left(x+y\right)^2\)

e: \(x^2\left(x-y\right)+y^2\left(y-x\right)=\left(x-y\right)^2\cdot\left(x+y\right)\)

f: \(9x^2\left(x-2\right)-4y^2\left(x-2\right)=\left(x-2\right)\left(3x-2y\right)\left(3x+2y\right)\)

28 tháng 2 2021

`(x+1)(x+3)=2x^2-2`

`<=>x^2+x+3x+3=2x^2-2`

`<=>x^2-4x-5=0`

`<=>x^2-5x+x-5=0`

`<=>x(x-5)+(x-5)=0`

`<=>(x-5)(x+1)=0`

`<=>` $\left[ \begin{array}{l}x=5\\x=-1\end{array} \right.$

Vậy `S={5,-1}`

Ta có: \(\left(x+1\right)\left(x+3\right)=2x^2-2\)

\(\Leftrightarrow\left(x+1\right)\left(x+3\right)-2x^2+2=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+3\right)-2\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+3\right)-2\left(x+1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left[x+3-2\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+3-2x+2\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(5-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\5-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=5\end{matrix}\right.\)

Vậy: S={-3;5}

a: Ta có: \(x\left(2-3x\right)+\left(3x^3-x^2\right):x\)

\(=2x-3x^2+3x^2-x\)

=x

b: Ta có: \(2x\left(x-3y\right)-\left(8x^3y-12x^2y^2\right):2xy\)

\(=2x^2-6xy-4x^2+6xy\)

\(=-2x^2\)

2 tháng 8 2015

CM đẳng thức hay tìm x,y vậy 

2 tháng 8 2015

Mình sẽ làm theo đề bài của mình nếu đúng thì ... nha 

Biến đổi vế phải  ta có :

( x + y) [ ( x - y)^2 + xy ] = ( x + y)( x^2 - 2xy + y^2 + xy)

                                      = ( x+  y)( x^2 - xy+ y^2)

                                       = x^3 + y^3

VẬy VT  = VP đẳng thức được CM 

   

6 tháng 8 2019

\(\left(x-2\right)\left(x-3\right)=\left(x-2\right)\left(x+1\right)\)

\(\Leftrightarrow x^2-5x+6=x^2-x-2\)

\(\Leftrightarrow-4x+8=0\)

\(\Leftrightarrow x=2\)

Vậy ...

6 tháng 8 2019

(x-2)(x-3)=(x-2)(x+1)

\(x^2-5x+6=x^2-x-2\)

\(x^2-x^2-5x+x=-6-2\)

\(-4x=-8\)

\(x=2\)

\(\text{Vậy x=2}\)

5 tháng 12 2021

\(a,3\left(x^2-7\right)-x\left(3x+5\right)=3x^2-21-3x^2-5x=-5x-21\\ b,\left(12x^2y^2-6xy\right):3xy+2y=3xy\left(4xy-2\right):3xy+2y=4xy-2+2y\)

\(c,\dfrac{4}{x+1}+\dfrac{8}{\left(x-1\right)\left(x+1\right)}=\dfrac{4\left(x-1\right)+8}{\left(x-1\right)\left(x+1\right)}=\dfrac{4x-4+8}{\left(x-1\right)\left(x+1\right)}=\dfrac{4x+4}{\left(x-1\right)\left(x+1\right)}=\dfrac{4\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{4}{x-1}\)

5 tháng 12 2021

thk you!!!!

8 tháng 9 2020

\(C=x^2-xy+x-y^2-y+xy\)

\(C=x^2-y^2+x-y=\left(x-y\right)\left(x+y+1\right)\)

Học tốt :))

8 tháng 9 2020

Rút gọn ạ ? -.-

C = x( x - y + 1 ) - y( y + 1 - x )

= x2 - xy + x - y2 - y + xy

= x2 - y2 + x - y

28 tháng 3 2021

- Đề lỗi phải khum ạ ?

AH
Akai Haruma
Giáo viên
28 tháng 3 2021

Lời giải:

ĐKXĐ: $x\neq \pm 4$

PT $\Leftrightarrow \frac{8(x-4)+8(x+4)}{x^2-16}=\frac{25}{3}$

$\Leftrightarrow \frac{16x}{x^2-16}=\frac{25}{3}$

$\Rightarrow 48x=25x^2-400$

$\Leftrightarrow 25x^2-48x-400=0$

$\Leftrightarrow (5x-\frac{24}{5})^2=\frac{10576}{25}$

$\Rightarrow x=\frac{24\pm 4\sqrt{661}}{25}$ (đều thỏa mãn)