K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1:
TXĐ:D=R

\(f\left(-x\right)=2\cdot\left(-x\right)^4-3\cdot\left(-x\right)^2+1\)

\(=2x^4-3x^2+1=f\left(x\right)\)

=>f(x) là hàm số chẵn

 

Câu 1: 

TXĐ: D=R

\(f\left(-x\right)=2\cdot\left(-x\right)^4-3\cdot\left(-x\right)^2+1=2x^4-3x^2+1=f\left(x\right)\)

Vậy: f(x) là hàm số chẵn

1 tháng 11 2021

Mình cảm ơn ạ

15 tháng 10 2021

a: \(\left|\overrightarrow{AB}-\overrightarrow{AC}\right|=\left|\overrightarrow{CB}\right|=10a\)

b: \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=\dfrac{BC}{2}=5a\)

19 tháng 9 2020

ăn lồn đê

19 tháng 9 2020

Đúng làm trẻ trâu , ăn nói mất lịch sự

NV
24 tháng 3 2021

6.

\(\Leftrightarrow x^2+4x+3>m\) ; \(\forall x>1\)

\(\Leftrightarrow m< \min\limits_{x>1}\left(x^2+4x+3\right)\)

Xét hàm \(f\left(x\right)=x^2+4x+3\) với \(x>1\)

\(-\dfrac{b}{2a}=-2< 1\) ; \(f\left(1\right)=8\Rightarrow f\left(x\right)>8\) ; \(\forall x>1\)

\(\Rightarrow m\le8\)

7.

Do C thuộc d nên tọa độ có dạng: \(C\left(-2c-1;c\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(4;6\right)\\\overrightarrow{CA}=\left(2c;1-c\right)\end{matrix}\right.\)

\(AB\perp AC\Leftrightarrow\overrightarrow{AB}.\overrightarrow{AC}=0\Leftrightarrow4.2c+4\left(1-c\right)=0\)

\(\Leftrightarrow4c+4=0\Rightarrow c=-1\Rightarrow C\left(1;-1\right)\)

b.

 \(AB=\sqrt{4^2+6^2}=2\sqrt{13}\)

Phương trình đường thẳng AB qua A và nhận \(\left(3;-2\right)\) là 1 vtpt có dạng:

\(3\left(x+1\right)-2\left(y-1\right)=0\Leftrightarrow3x-2y+5=0\)

Do d thuộc d nên tọa độ có dạng: \(D\left(-2d-1;d\right)\)

\(S_{ABD}=\dfrac{1}{2}AB.d\left(D;AB\right)=50\)

\(\Leftrightarrow\dfrac{\sqrt{13}\left|3\left(-2d-1\right)-2d+5\right|}{\sqrt{3^2+\left(-2\right)^2}}=50\)

\(\Leftrightarrow\left|-8d+2\right|=50\Rightarrow\left[{}\begin{matrix}d=-6\\d=\dfrac{13}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}D\left(11;-6\right)\\D\left(-14;\dfrac{13}{2}\right)\end{matrix}\right.\)

24 tháng 3 2021

2.

a, Gọi \(C=\left(-2m-1;m\right)\) là điểm cần tìm

\(AB=2\sqrt{13};AC=\sqrt{5m^2-2m+1};BC=\sqrt{5m^2+2m+65}\)

Ta có \(BC^2=AB^2+AC^2\)

\(\Leftrightarrow5m^2+2m+65=52+5m^2-2m+1\)

\(\Leftrightarrow m=-3\)

\(\Rightarrow C=\left(5;-3\right)\)

b, Gọi \(D=\left(-2n-1;n\right)\) là điểm cần tìm

Đường thẳng AB có phương trình \(\dfrac{x+1}{4}=\dfrac{y-1}{6}\Leftrightarrow3x-2y+5=0\)

Khoảng cách từ \(D\) đến \(AB\):

\(d\left(D;AB\right)=\dfrac{\left|3\left(-2n-1\right)-2n+5\right|}{\sqrt{3^2+2^2}}=\dfrac{\left|-8n+2\right|}{\sqrt{13}}\)

\(S_{ABC}=\dfrac{1}{2}.\dfrac{\left|-8n+2\right|}{\sqrt{13}}.2\sqrt{13}=50\)

\(\Rightarrow\left|4n-1\right|=25\)

\(\Leftrightarrow\left[{}\begin{matrix}n=-6\\n=\dfrac{13}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}N=\left(11;-6\right)\\N=\left(-14;\dfrac{13}{2}\right)\end{matrix}\right.\)

 

Câu 1: Vì (d') vuông góc với (d) nên \(a\cdot\dfrac{-1}{3}=-1\)

hay a=3

Vậy: (d'): y=3x+b

Thay x=4 và y=-5 vào (d'), ta được:

b+12=-5

hay b=-17

3 tháng 2 2023

Lỗi

a: =>x^2+5x-6>=0

=>(x+6)(x-1)>=0

=>x>=1 hoặc x<=-6

b: -5x^2+12x+6>0

=>5x^2-12x-6<0

=>\(\dfrac{6-\sqrt{66}}{5}< x< \dfrac{6+\sqrt{66}}{5}\)

c: =>7x^2-8x-12>=0

=>7x^2-14x+6x-12>=0

=>(x-2)(7x+6)>=0

=>x>=2 hoặc x<=-6/7

d: =>(x+2)(x+3)>=0

=>x>=-2 hoặc x<=-3

28 tháng 10 2019

\(|2x^2-3x+4|-|2x-x^2-1|=0\)

\(\Leftrightarrow|2x^2-3x+4|=|2x-x^2-1|\)

\(\Leftrightarrow\orbr{\begin{cases}2x^2-3x+4=2x-x^2-1\\2x^2-3x+4=-2x+x^2+1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x^2-3x+4-2x+x^2+1=0\\2x^2-3x+4+2x-x^2-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}3x^2-5x+5=0\\x^2-x+3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}3\left(x^2-\frac{5}{3}x+\frac{25}{9}-\frac{25}{9}+\frac{5}{3}\right)=0\\x^2-2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}3\left(x-\frac{5}{3}^2\right)-\frac{10}{3}=0\\\left(x-\frac{1}{2}\right)^2+\frac{11}{4}>0\left(Loai\right)\end{cases}}\)

\(\Leftrightarrow\left(x\sqrt{3}-\frac{5\sqrt{3}}{3}\right)^2-\left(\frac{\sqrt{30}}{3}\right)^2=0\)

\(\Leftrightarrow\left(x\sqrt{3}-\frac{5\sqrt{3}}{3}-\frac{\sqrt{30}}{3}\right)\left(x\sqrt{3}-\frac{5\sqrt{3}}{3}+\frac{\sqrt{30}}{3}\right)=0\)

\(\Leftrightarrow\left(x\sqrt{3}-\frac{\sqrt{30}+5\sqrt{3}}{3}\right)\left(x\sqrt{3}+\frac{\sqrt{30}-5\sqrt{3}}{3}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x\sqrt{3}-\frac{\sqrt{30}+5\sqrt{3}}{3}=0\\x\sqrt{3}+\frac{\sqrt{30}-5\sqrt{3}}{3}=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5+\sqrt{10}}{3}\\x=\frac{5-\sqrt{10}}{3}\end{cases}}\)

Vậy ...

31 tháng 10 2019

\(\left|2x^2-3x+4\right|-\left|2x-x^2-1\right|=0\)

\(\Leftrightarrow\left|2x^2-3x+4\right|=\left|2x-x^2-1\right|\)

\(\Leftrightarrow\orbr{\begin{cases}2x^2-3x+4=2x-x^2-1\\2x^2-3x+4=x^2-2x+1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}3x^2-5x+5=0\\x^2-x+3=0\end{cases}}\)

\(TH1:3x^2-5x+5=0\)

Ta có: \(\Delta=5^2-4.3.5=-35< 0\)(vô nghiệm)

\(TH2:x^2-x+3=0\)

Ta có: \(\Delta=1^2-4.1.3=-11< 0\)(vô nghiệm)

Vậy pt vô nghiệm

16 tháng 10 2019

1.

\(DK:x\ge2\)

PT

\(\Leftrightarrow\left(2+x\right)\sqrt{x-2}-\left(x+2\right)\left(x-2\right)\)

\(\Leftrightarrow\left(x+2\right)\sqrt{x-2}\left(1-\sqrt{x-2}\right)=0\)

Cho này thì ok ròi nhé

2.

\(DK:x\le\frac{5}{2}\)

Xet \(x\in\left[0;\frac{5}{2}\right]\)

PT

\(\Leftrightarrow x^2-4x=5-2x\)

\(\Leftrightarrow x^2-2x-5=0\)

Ta co:

\(\Delta^`=\left(-1\right)^2-1.\left(-5\right)=6>0\)

\(\Rightarrow\hept{\begin{cases}x_1=1+\sqrt{6}\left(l\right)\\x_2=1-\sqrt{6}\left(l\right)\end{cases}}\)

Xet \(x\le0\)

PT

\(4x-x^2=5-2x\)

\(\Leftrightarrow x^2-6x+5=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\left(l\right)\\x=5\left(l\right)\end{cases}}\)

Vay PT vo nghiem