Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : x^2 + y^2 +z^2 = xy + yz + xz
=> 2x^2 + 2y^2 +2z^2 = 2xy + 2yz + 2xz
=> ( x^2 - 2xy + y^2) + ( y^2 - 2yz + z^2 ) + ( z^2 -2xz + x^2 ) =0
=> ( x-y )^2 + ( y-z )^2 + ( z -x)^2 =0
=> x =y=z
thay vào .......
Mình sẽ làm theo đề bài của mình nếu đúng thì ... nha
Biến đổi vế phải ta có :
( x + y) [ ( x - y)^2 + xy ] = ( x + y)( x^2 - 2xy + y^2 + xy)
= ( x+ y)( x^2 - xy+ y^2)
= x^3 + y^3
VẬy VT = VP đẳng thức được CM
\(\frac{x^2+y^2}{xy}=\frac{10}{3}\Leftrightarrow 3x^2-10xy+3y^2=0\Leftrightarrow (x-3y)(3x-y)=0\)
Thay trường hợp vòa là xong
\(x\left(x-y\right)^2-y\left(x-y\right)^2+xy^2-x^2y\)
\(=\left(x-y\right)^2\left(x-y\right)-xy\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2-2xy+y^2-xy\right)\)
\(=\left(x-y\right)\left(x^2-3xy+y^2\right)\)
2(x-y)2 -y(x-y)2 +xy2-x2y= 2(x-y)2-y(x-y)2+(xy^2-x^2y)=2(x-y)2-y(x-y)2+xy(x-y)=(x-y)\(\left[2\left(x-y\right)-y\left(x-y\right)+xy\right]\)=(x-y)(2x-2y-xy+y2+xy)=(x-y)(2x-2y+y2)
\(2\left(x-y\right)^2-y\left(x-y\right)^2+xy^2-x^2y\)
\(=\left(x-y\right)^2\left(2-y\right)+xy\left(y-x\right)\)
\(=\left(x-y\right)^2\cdot\left(2-y\right)-xy\left(x-y\right)\)
\(=\left(x-y\right)\left[\left(x-y\right)\left(2-y\right)-xy\right]\)
Chỗ dấu bằng thứ hai sai nên bạn làm cũng chưa đúng
x^6 -y^6 = (x^2-y^2)(x^4 +x^2 .y^2 + y^4)
Bạn hiểu ra chỗ sai của mình chưa.Chúc bạn học tốt.
\(2x^2+2y^2\ge4xy\)
\(4x^2+z^2\ge4xz\)
\(4y^2+z^2\ge4yz\)
Cộng vế:
\(2\left(3x^2+3y^2+z^2\right)\ge4\left(xy+yz+zx\right)\ge20\)
\(\Rightarrow3x^2+3y^2+z^2\ge10\)
Dấu "=" xảy ra tại \(\left(x;y;z\right)=\left(1;1;2\right);\left(-1;-1;-2\right)\)
\(x-y=-3\)
\(\Rightarrow\left(x-y\right)^2=9\)
\(\Rightarrow x^2-2xy+y^2=9\)
\(\Rightarrow x^2+y^2-2.10=9\)
\(\Rightarrow x^2+y^2-20=9\)
\(\Rightarrow x^2+y^2=39\)