Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2-2xy-4z^2+y^2=\left(x-y\right)^2-4z^2=\left(x-y-2z\right)\left(x-y+2z\right)=\left(6+4-2.45\right)\left(6+4+2.45\right)=-8000\)b) \(3\left(x-3\right)\left(x+7\right)+\left(x-4\right)^2+48=3\left(x^2+4x-21\right)+\left(x^2-8x+16\right)+48=4x^2+4x+1=\left(2x+1\right)^2=\left(2.0,5+1\right)^2=4\)
a: Ta có: \(x^2-2xy+y^2-4z^2\)
\(=\left(x-y\right)^2-\left(2z\right)^2\)
\(=\left(x-y-2z\right)\left(x-y+2z\right)\)
\(=\left(6+4-2\cdot45\right)\left(6+4+2\cdot45\right)\)
\(=-8000\)
b: Ta có: \(3\left(x-3\right)\left(x+7\right)+\left(x-4\right)^2+48\)
\(=3\left(x^2+4x-21\right)+\left(x-4\right)^2+48\)
\(=3x^2+12x-63+x^2-8x+16+48\)
\(=2x^2+4x+1\)
\(=2\cdot\dfrac{1}{4}+4\cdot\dfrac{1}{2}+1\)
\(=\dfrac{7}{2}\)
a)x2-2xy-4x2+y2
= (x2-2xy+y2)-(2x)2
= (x-y)2-(2x)2 = (x-y-2x)(x-y+2x)(1)
Thay x=6; y=-4; z=45 ta được:
(1)<=>(6+4-90)(6+4+90)= (10-90).(10+90)=-80.100= -8000
a,5x^2 - 10xy + 5y^2 - 20z^2
=5(x^2 -2xy +y^2-4z^2 )
=5[(x-y)^2-(2z)^2 ]
=5 .(x-y-2z)(x-y+2z)
b,.= (5x^2+5xy)-(x+y)
=5x(x+y)-(x+y)
=(x+y)(5x-1)
d,x2 - 4x + 3 = x2 - x - 3x + 3
= x(x - 1) - 3(x - 1) = (x -1)(x - 3)
e,x2 - x - 6 = x2 +2x - 3x - 6
= x(x + 2) - 3(x + 2)
= (x + 2)(x - 3)
f,x2 - x - 6 = x2 +2x - 3x - 6
= x(x + 2) - 3(x + 2)
= (x + 2)(x - 3)
g,2x^2(3x - 5)
= 2x^2 x 3x - 2x^2 x 5
= 6x^3 - 10x^2
\(\text{1) }\)
\(\text{a) }5x^2-10xy+5y^2-20z^2\)
\(=5\left(x^2-2xy+y^2-4z^2\right)\)
\(=5\left[\left(x^2-2xy+y^2\right)-4z^2\right]\)
\(=5\left[\left(x-y\right)^2-\left(2z\right)^2\right]\)
\(=5\left(x-y+2z\right)\left(x-y-2z\right)\)
\(\text{b) }5x^2+5xy-x-y\)
\(=\left(5x^2-x\right)+\left(5xy-y\right)\)
\(=x\left(5x-1\right)+y\left(5x-1\right)\)
\(=\left(5x-1\right)\left(x+y\right)\)
\(\text{c) }2\left(x+4\right)-x^2+16\)
\(=2\left(x+4\right)-\left(x^2-16\right)\)
\(=2\left(x+4\right)-\left(x+4\right)\left(x-4\right)\)
\(=\left(x+4\right)\left(2-x+4\right)\)
\(=\left(x+4\right)\left(6-x\right)\)
\(\text{d) }x^2+4x+3\)
\(=x^2+3x+x+3\)
\(=\left(x^2+3x\right)+\left(x+3\right)\)
\(=x\left(x+3\right)+\left(x+3\right)\)
\(=\left(x+3\right)\left(x+1\right)\)
\(\text{e) }x^2+5x-6\)
\(=x^2+6x-x-6\)
\(=\left(x^2+6x\right)-\left(x+6\right)\)
\(=x\left(x+6\right)-\left(x+6\right)\)
\(=\left(x+6\right)\left(x-1\right)\)
1) \(x^2-x-y^2-y=\left(x^2-y^2\right)-\left(x+y\right)=\left(x-y\right)\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(x-y-1\right)\)
\(x^2-2xy+y^2-z^2=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\)
2)\(5x-5y+ax-ay=5\left(x-y\right)+a\left(x-y\right)=\left(x-y\right)\left(a+5\right)\)
\(a^3-a^2x-ay+xy=a^2\left(a-x\right)-y\left(a-x\right)=\left(a-x\right)\left(a^2-y\right)\)
a) \(x^2-2xy-4z^2+y^2\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)-\left(2z\right)^2\)
\(\Leftrightarrow\left(x-y\right)^2-\left(2z\right)^2\)
\(\Leftrightarrow\left[\left(x-y\right)+2z\right]\left[\left(x-y\right)-2z\right]\)
\(\Leftrightarrow\left(x-y+2z\right)\left(x-y-2z\right)\)
Tại x=6, y=-4, z=45
\(\left[6-\left(-4\right)+2.45\right]\left[6-\left(-4\right)-2.45\right]=100.\left(-80\right)=-8000\)
b) \(3\left(x-3\right)\left(x+7\right)+\left(x-4\right)^2+48\)
\(\Leftrightarrow3\left(x^2+7x-3x-21\right)+\left(x^2-4x+4\right)+48\)
\(\Leftrightarrow3x^2+21x-9x-63+x^2-4x+4+48\)
\(\Leftrightarrow4x^2+8x-11\)
Tại x=0,5 ta có:
\(4.\left(0,5\right)^2+8.0,5-11=-6\)
a)Đặt \(A=x^2-2xy-4z^2+y^2\)
\(=\left(x^2-2xy+y^2\right)-\left(2z\right)^2\)
\(=\left(x-y\right)^2-\left(2z\right)^2\)
\(=\left(x-y-2z\right)\left(x-y+2z\right)\)
Thay \(x=6;y=-4;z=45\) vào A, ta có:
\(A=\left[6-\left(-4\right)-2\cdot45\right]\left[6-\left(-4\right)+2\cdot45\right]\)
\(=100\cdot\left(-80\right)\)
\(=-8000\)
Vậy \(A=-8000\)
b) Đặt \(B=3\left(x-3\right)\left(x+7\right)+\left(x-4\right)^2+48\)
\(=3\left(x^2+7x-3x-21\right)+x^2-4x+4+48\)
\(=3x^2+12x-63+x^2-4x+52\)
\(=4x^2+8x-11\)
Thay \(x=0,5\) vào B, ta có:
\(B=4\cdot\left(0,5\right)^2+8\cdot0,5-11\)
\(=1\cdot4-11\)
\(=-6\)
Vậy \(B=-6\)
\(A=x^2-2xy-4z^2+y^2\)
\(=\left(x-y\right)^2-\left(2z\right)^2\)
\(=\left(x-y+2z\right)\left(x-y-2z\right)\)
\(=\left(6+4+45\right)\left(6+4-45\right)\)
\(=-1925\)
Ta có: \(x^2-2xy-4z^2+y^2\)
\(=\left(x^2-2xy+y^2\right)-4z^2\)
\(=\left(x-y\right)^2-4z^2=\left(x-y-2z\right)\left(x-y+2z\right)\)
\(=\left[6-\left(-4\right)-2\cdot45\right]\left[6-\left(-4\right)+2\cdot45\right]=-80\cdot100=-8000\)
a: A=2/3x^2y+4x^2y=14/3x^2y
=14/3*9*7=294
b: B=xy^2(1/2+1/3+1/6)=xy^2=3/4*1/4=3/16
c: C=x^3y^3(2+10-20)=-8x^3y^3
=-8*1^3(-1)^3=8
d: D=xy^2(2018+16-2016)
=18xy^2
=18(-2)*1/9=-4
Bài 2:
a: Ta có: \(2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\)
\(\Leftrightarrow10x-16-12x+15=12x-16+11\)
\(\Leftrightarrow-14x=-4\)
hay \(x=\dfrac{2}{7}\)
b: Ta có: \(2x\left(6x-2x^2\right)+3x^2\left(x-4\right)=8\)
\(\Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\)
\(\Leftrightarrow x^3=-8\)
hay x=-2
Bài 1:
a: Ta có: \(I=x\left(y^2-xy^2\right)+y\left(x^2y-xy+x\right)\)
\(=xy^2-x^2y^2+x^2y^2-xy^2+xy\)
\(=xy\)
=1
b: Ta có: \(K=x^2\left(y^2+xy^2+1\right)-\left(x^3+x^2+1\right)\cdot y^2\)
\(=x^2y^2+x^3y^2+x^2-x^3y^2-x^2y^2-y^2\)
\(=x^2-y^2\)
\(=\dfrac{1}{4}-\dfrac{1}{4}=0\)
\(x^2-2xy-4z^2+y^2\)
\(=\left(x^2-2xy+y^2\right)-4z^2\)
\(=\left(x-y\right)^2-\left(2z\right)^2\)
\(=\left(x-y-2z\right)\left(x-y+2z\right)\) ( 1 )
Thay vào bấm máy tính ta được ( 1 )=19
b) \(3\left(x-3\right)\left(x+7\right)-\left(x-4\right)^2\)
\(=\left(3x-9\right)\left(x+7\right)-\left(x^2-8x+16\right)\)
\(=3x^2+12-63-x^2+8x-16\)
\(=2x^2+20x-79\)
\(=2x^2+20x+50-129\)
\(=2\left(x+5\right)^2-129\)
Thay x vào