K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2015

PT 1 thiếu x1 chứ ??

PT cuối thiếu x2000 nữa

Cộng vế với vế ta dc

1999.( x1+x2+x3+ .....+ x2000) = 1+2+3+....+2000

=> x1+x2+x3+....+x2000 =1001,0005

(1) => x1 = 1001,0005 -1 = 1000,0005

(2) => x2= 1001,0005 -2 = 999,0005

.........................................

 

24 tháng 4 2019

khó Wá

8 tháng 1 2019

Cách khác nhé!
Cộng từng vế của các pt trên lại ta được

\(3\left(x_1+x_2+x_3+...+x_{10}\right)=30\)

\(\Leftrightarrow x_1+x_2+x_3+...+x_{10}=10\)(*)

\(\Leftrightarrow\left(x_1+x_2+x_3\right)+\left(x_4+x_5+x_6\right)+\left(x_7+x_8+x_9\right)+x_{10}=10\)

\(\Leftrightarrow3+3+3+x_{10}=10\)

\(\Leftrightarrow x_{10}=1\)

Viết lại pt (*) ta được

\(\left(x_{10}+x_1+x_2\right)+\left(x_3+x_4+x_5\right)+\left(x_6+x_7+x_8\right)+x_9=10\)

\(\Leftrightarrow3+3+3+x_9=10\)

\(\Leftrightarrow x_9=1\)

Chứng minh tương tự cuối cùng được \(x_1=x_2=x_3=...=x_{10}=1\)

Vậy .............

8 tháng 1 2019

Ta có:x1+x2+x3=x2+x3+x4=3

\(\Rightarrow\)x4-x1=0\(\Leftrightarrow\)x1=x4

cmtt ta có x1=x2=x3=...=x10

\(\Rightarrow\)x1=x2=x3=...=x10=1

1 tháng 7 2020

Với \(n=4\) bđt \(\Leftrightarrow\)\(\frac{x_1}{x_4+x_2}+\frac{x_2}{x_1+x_3}+\frac{x_3}{x_2+x_4}+\frac{x_4}{x_3+x_1}\ge2\)

\(\Leftrightarrow\)\(\frac{x_1^2}{x_4x_1+x_1x_2}+\frac{x_2^2}{x_1x_2+x_2x_3}+\frac{x_3^2}{x_2x_3+x_3x_4}+\frac{x_4^2}{x_3x_4+x_4x_1}\ge2\) (1) 

\(VT_{\left(1\right)}\ge\frac{\left(x_1+x_2+x_3+x_4\right)^2}{2\left(x_1x_2+x_2x_3+x_3x_4+x_4x_1\right)}\ge\frac{\left(x_1+x_2+x_3+x_4\right)^2}{2.\frac{\left(x_1+x_2+x_3+x_4\right)^2}{4}}=2\)

Giả sử bđt đúng đến n=k hay \(\frac{x_1}{x_k+x_2}+\frac{x_2}{x_1+x_3}+...+\frac{x_{k-1}}{x_{k-2}+x_k}+\frac{x_k}{x_{k-1}+x_1}\ge2\)

\(\Leftrightarrow\)\(\frac{x_2}{x_1+x_3}+...+\frac{x_{k-1}}{x_{k-2}+x_k}\ge2-\frac{x_1}{x_k+x_2}-\frac{x_k}{x_{k-1}+x_1}\)

Với n=k+1, cần cm \(\frac{x_1}{x_{k+1}+x_2}+\frac{x_2}{x_1+x_3}+...+\frac{x_{k-1}}{x_{k-2}+x_k}+\frac{x_k}{x_{k-1}+x_{k+1}}+\frac{x_{k+1}}{x_k+x_1}\ge2\)

hay \(\frac{x_1}{x_{k+1}+x_2}-\frac{x_1}{x_k+x_2}+\frac{x_k}{x_{k-1}+x_{k+1}}-\frac{x_k}{x_{k-1}+x_1}+\frac{x_{k+1}}{x_k+x_1}\ge0\) (2) 

giả sử \(x_k=max\left\{a_1;a_2;...;a_{k+1}\right\}\)

\(VT_{\left(2\right)}=\frac{x_1\left(x_k-x_{k+1}\right)}{\left(x_k+x_2\right)\left(x_{k+1}+x_2\right)}+\frac{x_k\left(x_1-x_{k+1}\right)}{\left(x_{k-1}+x_1\right)\left(x_{k-1}+x_{k+1}\right)}+\frac{x_{k+1}}{x_k+x_1}>0\)

2 tháng 7 2020

nhầm, chỗ giả sử là \(x_{k+1}=min\left\{x_1;x_2;...;x_{k+1}\right\}\)

1 tháng 9 2019

x1+x2+x3+...+x2008=2008

\(\Leftrightarrow\)(x1-1)+(x2-1)+(x3-1)+...+(x2008-1)=0 (1)

x31+x32+x33+...+x32008=x41+x42+x43+...+x42008

Lấy vế phải trừ vế trái ta được :

x31(x1-1)+x32(x2-1)+x33(x3-1)+...+x32008(x2008-1)=0 (2)

Lấy (1) (2) rồi đặt nhân tử chung là ra cái này

(x31-1)(x1-1)+(x32-1)(x2-1)+(x33-1)(x3-1)+...+(x32008-1)(x2008-1)=0

Ta thấy (x31-1)(x1-1) = (x1-1)(x21+x1+1)(x1-1) = (x1-1)2(x21+x1+1)\(\ge\)0 Với mọi x

CMTT : (x23-1)(x2-1) \(\ge\)0 Với mọi x

.............................................

(x20083-1)(x2008-1) \(\ge\)0 Với mọi x

\(\Rightarrow\)(x31-1)(x1-1)+(x32-1)(x2-1)+(x33-1)(x3-1)+...+(x32008-1)(x2008-1)\(\ge\)0

Mà(x31-1)(x1-1)+(x32-1)(x2-1)+(x33-1)(x3-1)+...+(x32008-1)(x2008-1)=0

Đến đây bạn tự suy ra x1=1; x2=1;...;x2008=1 nhé!

Mình hơi bận nên không giải tiếp được bán nhé!

Mong bạn thông cảm

31 tháng 8 2019

@ Nguyên Công Thành

11 tháng 1 2019

\(\left\{{}\begin{matrix}x_1+x_2+...+x_{2000}=a\left(1\right)\\x_1^2+x_2^2+...+x_{2000}^2=a^2\left(2\right)\\x_1^{2000}+x_2^{2000}+...+x_{2000}^{2000}=a^{2000}\left(3\right)\end{matrix}\right.\)

Từ (2)(3)\(\Rightarrow2\left(x_1x_2+x_2x_3+...+x_{2000}x_1\right)=0\)

\(\Rightarrow x_1=x_2=...=x_{2000}=0\)

Vậy hpt có nghiệm là x=0.

Đúng không ạ?