K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2017

lấy trên trừ dưới ta được\(\left(x^2-2y^2\right)-\left(y^2-2x^2\right)=7x-7y\)

\(\Leftrightarrow3\left(x-y\right)\left(x+y\right)-7\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(3x+3y-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y\left(1\right)\\3x+3y=7\left(2\right)\end{matrix}\right.\)

từ (1) với 1 trong 2 pt trên ta đc hpt\(\Leftrightarrow\left\{{}\begin{matrix}x=y\\x^2-2y^2=7x\end{matrix}\right.\)

suy ra x và y

từ (2) với 1 trong 2 pt trên ta cũng có hpt\(\Leftrightarrow\left\{{}\begin{matrix}3x+3y=7\\x^2-2y^2=7x\end{matrix}\right.\)

14 tháng 12 2017

cảm ơn nhìu nhé ~~

NV
24 tháng 3 2021

\(\Leftrightarrow\left\{{}\begin{matrix}x^3-x^2y-7\left(x-y\right)=x^2+y^2+2xy+4\\3x^2+y^2-8\left(x-y\right)+4=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2-7\right)\left(x-y\right)-x^2-2xy=y^2+4\\3x^2-8\left(x-y\right)=-y^2-4\end{matrix}\right.\)

Cộng vế:

\(\left(x^2-7\right)\left(x-y\right)-8\left(x-y\right)+2x^2-2xy=0\)

\(\Leftrightarrow\left(x^2-15\right)\left(x-y\right)+2x\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+2x-15\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x^2+2x-15=0\end{matrix}\right.\)

\(\Leftrightarrow...\)

13 tháng 4 2017

\(\left\{{}\begin{matrix}\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\\\sqrt{2x+y+1}+2\sqrt[3]{7x+12y+8}=2xy+y+5\end{matrix}\right.\)

Xét \(pt\left(1\right)\) dễ dàng suy ra \(x+y\ge0\)

\(VT=\sqrt{\left(x-y\right)^2+\left(2x+y\right)^2}+\sqrt{\left(x-y\right)^2+\left(2y+x\right)^2}\)

\(\ge\left|2x+y\right|+\left|2y+x\right|\ge3\left(x+y\right)\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x=y\\x,y\ge0\end{matrix}\right.\)

Thay vào \(pt\left(2\right)\) ta được:

\(\sqrt{3x+1}+2\sqrt[3]{19x+8}=2x^2+x+5\)

\(\Leftrightarrow\left[\sqrt{3x+1}-\left(x+1\right)\right]+2\left[\sqrt[3]{19x+8}-\left(x+2\right)\right]=2x^2-2x\)

\(\Leftrightarrow\left(x-x^2\right)\left[\dfrac{1}{\sqrt{3x+1}+x+1}+2\cdot\dfrac{x+7}{\sqrt[3]{\left(19x+8\right)^2}+\left(x+2\right)\sqrt[3]{19x+8}+\left(x+2\right)^2}+2\right]=0\)

Do \(x;y\ge0\) nên pt trong ngoặc luôn dương

\(\Rightarrow x-x^2=0\Rightarrow x\left(1-x\right)=0\Rightarrow\)\(\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

\(x=y\)\(\Rightarrow\left[{}\begin{matrix}x=y=0\\x=y=1\end{matrix}\right.\) là nghiệm của hpt

14 tháng 4 2017

thanks b đã chỉ giúp mình.tại đánh máy nên mình ko để ý^^

3 tháng 3 2019

1)Điều kiện: \(x + y > 0\)\((1) \Leftrightarrow (x + y)^2 - 2xy + \dfrac{2xy}{x + y} - 1 = 0 \\ \Leftrightarrow (x + y)^3 - 2xy(x + y) + 2xy -(x + y) = 0 \\ \Leftrightarrow (x+y)[(x+y)^2- 1]-2xy(x+y-1)=0 \\ \Leftrightarrow (x+y)(x+y+1)(x+y-1)-2xy(x+y-1)=0 \\ \Leftrightarrow (x + y - 1)[(x+y)(x + y + 1)-2xy] = 0 \\ \Leftrightarrow \left[ \begin{matrix}x + y = 1 \,\, (3) \\ x^2+y^2+x+y=0 \,\, (4) \end{matrix} \right.\)(4) vô nghiệm vì x + y > 0

Thế (3) vào (2) , giải được nghiệm của hệ :\((x =1 ; y = 0)\)\((x = -2 ; y = 3)\)

3 tháng 3 2019

\((1)\Leftrightarrow (x-2y)+(2x^3-4x^2y)+(xy^2-2y^3)=0\)\(\Leftrightarrow (x-2y)(1+2x^2+y^2)=0\)

\(\Leftrightarrow x=2y\)(vì \(1+2x^2+y^2>0, \forall x,y\))

Thay vào phương trình (2) giải dễ dàng.

NV
14 tháng 10 2020

\(\Rightarrow2x^2y+3xy-2x^2-9x=4x^2+2y-6\)

\(\Leftrightarrow6x^2-2x^2y+\left(3xy-9x\right)+2y-6=0\)

\(\Leftrightarrow2x^2\left(3-y\right)-3x\left(3-y\right)-2\left(3-y\right)=0\)

\(\Leftrightarrow\left(2x^2-3x-2\right)\left(3-y\right)=0\)

\(\Leftrightarrow...\)

15 tháng 12 2021

Từ 2 PT ta được:

\(\Leftrightarrow x^2-x^2y+y^2-y^2x=x-2xy+y\\ \Leftrightarrow\left(x+y\right)^2-xy\left(x+y\right)-\left(x+y\right)=0\\ \Leftrightarrow\left(x+y\right)\left(x+y-xy-1\right)=0\\ \Leftrightarrow\left(x+y\right)\left(1-y\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+y=0\\y=1\\x=1\end{matrix}\right.\)

Với \(x+y=0\Leftrightarrow x=-y\Leftrightarrow-y+2y^2+y=3\Leftrightarrow y^2=\dfrac{3}{2}\Leftrightarrow\left[{}\begin{matrix}y=\dfrac{\sqrt{6}}{2}\Leftrightarrow x=-\dfrac{\sqrt{6}}{2}\\y=-\dfrac{\sqrt{6}}{2}\Leftrightarrow x=\dfrac{\sqrt{6}}{2}\end{matrix}\right.\)

Với \(y=1\Leftrightarrow x-2x+1=3\Leftrightarrow x=-2\)

Với \(x=1\Leftrightarrow1-2y+y=3\Leftrightarrow y=-2\)

Vậy \(\left(x;y\right)\in\left\{\left(-2;1\right);\left(1;-2\right);\left(\dfrac{\sqrt{6}}{2};-\dfrac{\sqrt{6}}{2}\right);\left(-\dfrac{\sqrt{6}}{2};\dfrac{\sqrt{6}}{2}\right)\right\}\)

15 tháng 12 2021

cam on bn

 

23 tháng 2 2023

ĐKXĐ : \(\left\{{}\begin{matrix}x\ge-1\\y\ge0\end{matrix}\right.\)

Ta có : \(x+\sqrt{\left(x+1\right).y}=2y-1\)

\(\Leftrightarrow x+1+\sqrt{\left(x+1\right)y}-2y=0\)

\(\Leftrightarrow\left(\sqrt{x+1}-\sqrt{y}\right)\left(\sqrt{x+1}+2\sqrt{y}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=\sqrt{y}\left(1\right)\\\sqrt{x+1}+2\sqrt{y}=0\left(2\right)\end{matrix}\right.\)

Từ (2) ta có \(\left\{{}\begin{matrix}x+1=0\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=0\end{matrix}\right.\) (tm)

Thử lại ta có (x;y) = (-1;0) là 1 nghiệm của hệ phương trình

Từ (1) ta có : x + 1 = y

Khi đó \(\sqrt{2x+3}+\sqrt{y}=x^2-y\)

\(\Leftrightarrow\sqrt{2x+3}+\sqrt{x+1}=x^2-x-1\)

\(\Leftrightarrow\left(\sqrt{2x+3}-3\right)+\left(\sqrt{x+1}-2\right)=x^2-x-6\)

\(\Leftrightarrow\dfrac{2x-6}{\sqrt{2x+3}+3}+\dfrac{x-3}{\sqrt{x+1}+2}=\left(x-3\right)\left(x+2\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\\dfrac{2}{\sqrt{2x+3}+3}+\dfrac{1}{\sqrt{x+1}+2}=x+2\end{matrix}\right.\)

Với x = 3 => y = 4 (tm)

Với \(\dfrac{2}{\sqrt{2x+3}+3}+\dfrac{1}{\sqrt{x+1}+2}=x+2\)

Vì \(x\ge-1\) nên \(\dfrac{2}{\sqrt{2x+3}+3}\le\dfrac{1}{2};\dfrac{1}{\sqrt{x+1}+2}\le\dfrac{1}{2}\)

nên \(VT\le\dfrac{1}{2}+\dfrac{1}{2}=1\) 

lại có  \(VP\ge1\) khi x \(\ge-1\)

Dấu "=" xảy ra khi x = -1 => y = 0 (tm)

Vậy (x;y) = (-1;0) ; (3;4) 

23 tháng 2 2023

đk: \(\left\{{}\begin{matrix}x\ge-1\\y\ge0\\x^2>y\end{matrix}\right.\)

pt đầu \(\Leftrightarrow\sqrt{\left(x+1\right)y}=2y-x-1\) 

\(\Rightarrow\left(x+1\right)y=4y^2+x^2+1+2x-4xy-4y\)

\(\Leftrightarrow x^2+4y^2-5xy+2x-5y+1=0\)

\(\Leftrightarrow\left(x-y\right)\left(x-4y\right)+\left(x-y\right)+\left(x-4y\right)+1=0\)

\(\Leftrightarrow\left(x-y+1\right)\left(x-4y+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=x+1\\x=4y-1\end{matrix}\right.\)

TH1: \(y=x+1\) thay vào pt thứ hai, ta được 

\(\sqrt{2x+3}+\sqrt{x+1}=x^2-x-1\) 

\(\Leftrightarrow\left(\sqrt{2x+3}-3\right)+\left(\sqrt{x+1}-2\right)=x^2-x-6\)

\(\Leftrightarrow\dfrac{2x-6}{\sqrt{2x+3}+3}+\dfrac{x-3}{\sqrt{x+1}+2}-\left(x-3\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(\dfrac{2}{\sqrt{2x+3}+3}+\dfrac{1}{\sqrt{x+1}+2}-x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(nhận\right)\\\dfrac{2}{\sqrt{2x+3}+3}+\dfrac{1}{\sqrt{x+1}+2}-x+2=0\end{matrix}\right.\)

TH1.1: \(x=3\Rightarrow y=x+1=4\) (nhận)

TH1.2:\(\dfrac{2}{\sqrt{2x+3}+3}+\dfrac{1}{\sqrt{x+1}+2}-x+2=0\) (chỗ này mai mình nghĩ tiếp)

TH2: \(x=4y-1\). Thay vào pt thứ hai, ta được 

\(\sqrt{8y+1}+\sqrt{y}=16y^2-9y+1\) 

\(\Leftrightarrow\left(\sqrt{8y+1}-1\right)+\sqrt{y}=16y^2-9y\)

\(\Leftrightarrow\dfrac{8y}{\sqrt{8y+1}+1}+\dfrac{y}{\sqrt{y}}-16y^2+9y=0\)

\(\Leftrightarrow y\left(\dfrac{8}{\sqrt{8y+1}+1}+\dfrac{1}{\sqrt{y}}-16y+9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=0\\\dfrac{8}{\sqrt{8y+1}+1}+\dfrac{1}{\sqrt{y}}-16y+9=0\end{matrix}\right.\)

TH2.1: \(y=0\) \(\Rightarrow x=4y-1=-1\) (nhận)

TH2.2: \(\dfrac{8}{\sqrt{8y+1}+1}+\dfrac{1}{\sqrt{y}}-16y+9=0\)

(đoạn này để mai mình nghĩ tiếp nhé, ta tìm được các nghiệm \(\left(x;y\right)=\left(-1;0\right);\left(3;4\right)\))