K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

x^3+2y^2-4y+3=0

=>x^3=-1-2(y-1)^2<=-1

=>x<=-1

x^2+x^2y^2-2y=0

=>x^2=2y/1+y^2<=1

=>-1<=x<=1

=>x=-1

=>y=1

22 tháng 12 2017

\(\hept{\begin{cases}x^3+2y^2-4y+3=0\\x^2+x^2y^2-2y=0\end{cases}}\)

\(x^3+2y^2-4y+3=0\Leftrightarrow x^2+2\left(y^2-2+1\right)+1=0\Leftrightarrow\left(y-1\right)^2=\frac{-1-x^3}{2}\)

\(\Rightarrow\frac{-1-x^3}{2}\ge0\Leftrightarrow x\ge-1\)

Để có nghiệm thì \(\Delta_y=4-4x^4\ge0\Leftrightarrow-1\le x\le1\)

Kết hợp với trên, ta có: x = -1, thế vào PT ban đầu, tính được y = 1

Vậy hệ của nghiệm là: \(\left(x,y\right)=\left(-1;1\right)\)

29 tháng 1 2018

Trong OLM,số người học lớp 9 chơi phần mềm này rất ít!!Anh có thể vào Học24h để hỏi,ở đó còn có rất nhiều thầy cô giáo sẽ giúp anh!!

27 tháng 9 2019

Lấy pt thứ nhất của hệ - pt thứ 2 thu được:

\(x^2y^2+2x^2y-xy-6x^2=0\)

\(\Leftrightarrow x\left(xy^2+2xy-y-6x\right)=0\)

Suy ra \(x=0\text{ hoặc }xy^2+2xy-y-6x=0\)

Thay x = 0 vào 1 trong 2 pt ta thấy ko tm(loại)

Nếu \(xy^2+2xy-y-6x=0\Leftrightarrow x\left(y^2+2y-6\right)=y\)

\(x=\frac{y}{y^2+2y-6}\)

Giờ chắc là thay vào 1 trong 2 pt rồi quy đồng thôi:v Chị check lại xem mấy bước trên đúng ko? nếu đúng thì quy đồng chắc chắn ra (mặc dù khá mệt:v)

28 tháng 9 2019

Tui cũng giải ra y vầy thấy mệt quá nên bỏ nè:v

=>x(x^2+1)-2y(x^2+1)=0 và căn x+1-căn 16-y=3

=>x=2y và căn 2y+1-căn 16-y=3

=>\(\left\{{}\begin{matrix}x=2y\\\sqrt{2y+1}-\sqrt{16-y}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2y\\2y+1+16-y-2\sqrt{\left(2y+1\right)\left(16-y\right)}=9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y+17-\sqrt{4\left(16y-2y^2+16-y\right)}=9\\x=2y\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\sqrt{4\left(-2y^2+15y+16\right)}=y+8\\x=2y\end{matrix}\right.\)

=>-8y^2+60y+64=y^2+16y+64 và x=2y

=>-9y^2+44y=0 và x=2y

=>y=44/9 hoặc y=0 và x=2y

=>(x,y)=(0;0) hoặc (x;y)=(88/9;44/9)

18 tháng 8 2017

\(\hept{\begin{cases}x^2y-2x+3y^2=0\\x^2+xy^2+2y=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=y=0\\x=-y=1\\x=2\sqrt[3]{3};y=-\frac{2}{\sqrt[3]{3}}\end{cases}}\)

18 tháng 8 2017

thiếu nghiệm

16 tháng 2 2019

2 x - y = 5 x + y + 2 x + 2 y - 5 = 0

Ta đưa về giải hai hệ phương trình:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

hoặc Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Giải hệ:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Giải hệ:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vậy hệ phương trình đã cho có hai nghiệm

( x 1 ; y 1 ) = (1; -3) và ( x 2 ; y 2 ) = (3; 1)

NV
26 tháng 8 2020

\(y^3+3x^2y-3xy^2-2x^3=0\)

\(\Leftrightarrow\left(y^3-xy^2+x^2y\right)-2\left(x^3-x^2y+xy^2\right)=0\)

\(\Leftrightarrow y\left(x^2-xy+y^2\right)-2x\left(x^2-xy+y^2\right)=0\)

\(\Leftrightarrow\left(y-2x\right)\left(x^2-xy+y^2\right)=0\)

\(\Rightarrow y=2x\)

Thế xuống dưới:

\(x^4-2x^3-x^2+2x+1=0\)

Nhận thấy \(x=0\) ko phải nghiệm, chia 2 vế cho \(x^2\)

\(x^2+\frac{1}{x^2}-2\left(x-\frac{1}{x}\right)-1=0\)

Đặt \(x-\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2+2\) pt trở thành:

\(t^2-2t+1=0\Leftrightarrow t=1\)

\(\Leftrightarrow x-\frac{1}{x}=1\Leftrightarrow x^2-x-1=0\Leftrightarrow...\)