Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ:...
- Với \(y=0\Rightarrow x=0\)
- Với \(y\ne0\)
\(\Rightarrow\sqrt{\frac{x}{y}+1}+\sqrt{\frac{x}{y}-1}=2\)
\(\Rightarrow\frac{x}{y}+\sqrt{\left(\frac{x}{y}\right)^2-1}=2\)
\(\Rightarrow\sqrt{\left(\frac{x}{y}\right)^2-1}=2-\frac{x}{y}\) \(\left(\frac{x}{y}\le2\right)\)
\(\Rightarrow\left(\frac{x}{y}\right)^2-1=4-\frac{4x}{y}+\left(\frac{x}{y}\right)^2\)
\(\Rightarrow\frac{x}{y}=\frac{5}{4}\Rightarrow x=\frac{5y}{4}\)
Thay vào pt dưới:
\(\frac{5y}{4}\sqrt{2y}-y\sqrt{\frac{5y}{4}-1}=\frac{y}{2}\)
\(\Leftrightarrow5\sqrt{2y}=2\sqrt{5y-4}+2\)
\(\Leftrightarrow50y=4\left(5y-4\right)+4+8\sqrt{5y-4}\)
\(\Leftrightarrow15y+6=4\sqrt{5y-4}\)
\(\Leftrightarrow9y^2+4y+4=0\) (vn)
Vậy pt có nghiệm duy nhất \(x=y=0\)
=>x(x^2+1)-2y(x^2+1)=0 và căn x+1-căn 16-y=3
=>x=2y và căn 2y+1-căn 16-y=3
=>\(\left\{{}\begin{matrix}x=2y\\\sqrt{2y+1}-\sqrt{16-y}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2y\\2y+1+16-y-2\sqrt{\left(2y+1\right)\left(16-y\right)}=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y+17-\sqrt{4\left(16y-2y^2+16-y\right)}=9\\x=2y\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\sqrt{4\left(-2y^2+15y+16\right)}=y+8\\x=2y\end{matrix}\right.\)
=>-8y^2+60y+64=y^2+16y+64 và x=2y
=>-9y^2+44y=0 và x=2y
=>y=44/9 hoặc y=0 và x=2y
=>(x,y)=(0;0) hoặc (x;y)=(88/9;44/9)
\(y\left(x+1\right)^2=-x^2+2018x-1\)
\(\Leftrightarrow y=\dfrac{-x^2+2018x-1}{\left(x+1\right)^2}=-1+\dfrac{2020x}{\left(x+1\right)^2}\)
\(\Rightarrow\dfrac{2020x}{\left(x+1\right)^2}\in Z\)
Mà x và \(x\left(x+2x\right)+1\) nguyên tố cùng nhau
\(\Rightarrow2020⋮\left(x+1\right)^2\)
Ta có 2020 chia hết cho đúng 2 số chính phương là 1 và 4
\(\Rightarrow\left[{}\begin{matrix}\left(x+1\right)^2=1\\\left(x+1\right)^2=4\end{matrix}\right.\) \(\Rightarrow x=\left\{0;1\right\}\) \(\Rightarrow y\)
b.
Từ pt đầu:
\(x^2+xy-2y^2+2\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+2y\right)+2\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+2y+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-2y-2\end{matrix}\right.\)
Thế xuống dưới ...
ĐKXĐ: ...
Bình phương 2 vế pt đầu:
\(\Leftrightarrow\sqrt{\left(2x-y-1\right)\left(3y+1\right)}=\sqrt{x^2+2xy}\)
\(\Leftrightarrow x^2+3y^2-4xy+4y-2x+1=0\)
\(\Leftrightarrow\left(x-y-1\right)\left(x-3y-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=y+1\\x=3y+1\end{matrix}\right.\)
Thay xuống pt dưới được pt bậc 3 và bấm máy bình thường
Lời giải:
Xét PT thứ nhất:
\(x^2-2y^2=xy+x+y\)
\(\Leftrightarrow x^2-y^2=xy+x+y+y^2\)
\(\Leftrightarrow (x-y)(x+y)=(y+1)(x+y)\)
\(\Leftrightarrow (x+y)(x-y-y-1)=0\)
\(\Rightarrow \left[\begin{matrix} x+y=0\\ x-2y=1\end{matrix}\right.\)
Ta thấy theo pt thứ 2, thì ĐKXĐ là \(y\geq 0;x\geq 1\)
\(\Rightarrow x+y\geq 1>0\)
Suy ra \(x-2y=1\Rightarrow x=2y+1\). Thay vào pt thứ 2:
\((2y+1)\sqrt{2y}-y\sqrt{2y}=4y+2-y+1\)
\(\Leftrightarrow (y+1)\sqrt{2y}=3y+3\)
\(\Leftrightarrow (y+1)(\sqrt{2y}-3)=0\)
Vì $y\geq 0$ nên $y+1\neq 0$. Do đó \(\sqrt{2y}=3\Rightarrow y=\frac{9}{4}\)
Kéo theo \(x=\frac{11}{2}\)
Vậy..........
Pt 1 là -2y^2 chứ?
\(\left(1\right)\Leftrightarrow x^2-xy-2y^2=\left(x+y\right)\Leftrightarrow\left(x+y\right)\left(x-2y\right)=\left(x+y\right)\)
\(\Leftrightarrow\left(x+y\right)\left(x-2y-1\right)=0\)
Đến đây bạn tự giải tiếp nhé