Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cả hai à tham thế i:
Cộng Đại Số
\(\hept{\begin{cases}8x-7y=5\\12x+13y=-8\end{cases}\Leftrightarrow\hept{\begin{cases}24x-21y=15\left(1\right)\\24x+26y=-16\left(2\right)\end{cases}}}\)
Lấy (2) trừ (1)
\(\left(24x-24x\right)-21y-26y=15-\left(-16\right)\)
\(\Leftrightarrow47y=-31\Rightarrow y=\frac{31}{47}\)thay vào đầu x=5+7.31/47
\(\hept{\begin{cases}8x^3y^3+27=18y^3\\4x^2y+6x=y^2\end{cases}}\)
Dễ thấy y = 0 không phải là nghiệm của hệ.
Xét \(y\ne0\)
\(\Rightarrow\hept{\begin{cases}8x^3y^3+27=18y^3\left(1\right)\\4x^2y^2+6xy=y^3\left(2\right)\end{cases}}\)
Lấy (1) - 18.(2) ta được
\(8x^3y^3-72x^2y^2-108xy+27=0\)
\(\Leftrightarrow\left(2xy+3\right)\left(4x^2y^2-42xy+9\right)=0\)
Đặt \(xy=a\)
\(\Rightarrow\left(2a+3\right)\left(4a^2-42a+9\right)=0\)
Tới đây thì bạn làm tiếp nhé.
cho mk hỏi ai chs lazi điểm danh cái đê ~ mk hỏi thật đấy k đùa nha ~ bình luận thì mk k cho 3 cái ~
\(\hept{\begin{cases}x^3-8x=y^3+2y\\x^2-3y^2=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}6\left(x^3-y^3\right)=6\left(8x+2y\right)\\x^2-3y^2=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}6\left(x^3-y^3\right)=\left(x^2-3y^2\right)\left(8x+2y\right)\\x^2-3y^2=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}24xy^2-2x^2y-2x^3=0\\x^2-3y^2=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x\left(3y-x\right)\left(4y+x\right)=0\\x^2-3y^2=6\end{cases}}\)
Đơn giản rồi làm tiếp nhé
\(\hept{\begin{cases}5x^2-3y=x-3xy\\x^3-x^2=y^2-3y^3\end{cases}}\)
Với x = 0 thì y = 0
Với x \(\ne\)0 thì nhân pt trên cho x ta được
\(\Leftrightarrow\hept{\begin{cases}5x^3-3yx=x^2-3x^2y\left(1\right)\\x^3-x^2=y^2-3y^3\left(2\right)\end{cases}}\)
Lấy (1) + (2) vế theo vế được
\(\Leftrightarrow6x^3-3xy-x^2=x^2+y^2-3x^2y-3y^3\)
\(\Leftrightarrow6x^3-3xy-2x^2-y^2+3x^2y+3y^3=0\)
\(\Leftrightarrow\left(x+y\right)\left(3y^2-3xy-y+6x^2-2x\right)=0\)
Tới đây thì đơn giản roofin làm tiếp nhé
\(\hept{\begin{cases}8x+7y=16\\8x-3y=-24\end{cases}}\Leftrightarrow\hept{\begin{cases}8x+7y=16\\3y-8x=24\end{cases}}\Leftrightarrow\hept{\begin{cases}3y-8x=24\\10y=40\end{cases}}\Leftrightarrow\hept{\begin{cases}3.4-8x=24\\y=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{3}{2}\\y=4\end{cases}}\)
Vậy hệ đã cho có nghiệm duy nhất \(\left(-\frac{3}{2};4\right)\)