Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}x+y-z=5\\10x+10y+2xy-z^2+25=0\end{cases}}\Leftrightarrow\hept{\begin{cases}z=x+y-5\\10x+10y+2xy-z^2+25=0\end{cases}}\)
Thế phương trình trên vào phương trình dưới, ta có:
\(10x+10y+2xy-\left(x+y-5\right)^2+25=0\)
\(\Leftrightarrow10x+10y+2xy-\left(x^2+y^2+25-10x-10y+2xy\right)+25=0\)
\(\Leftrightarrow-x^2-y^2+20x+20y=0\)
\(\Leftrightarrow-x^2+20x=y^2-20y\)
Dựa vào tương giao hai đồ thị, ta thấy phương trình trên có 2 cặp nghiệm (0; 0 ) hoặc (20;20)
Với x = 0, y = 0, ta có z = -5.
Với x = 20, y = 20, ta có x = 35
cho mk hỏi ai chs lazi điểm danh cái đê ~ mk hỏi thật đấy k đùa nha ~ bình luận thì mk k cho 3 cái ~
b) \(\hept{\begin{cases}x^2-4x+3=0\left(1\right)\\x^2+xy+y^2=3\left(2\right)\end{cases}}\)
Từ (1) <=> (x - 1)(x - 3) = 0 \(\Leftrightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\)
Với x = 3 => (2) <=> 32 + 3y + y2 = 3
<=> y2 + 3y + 6 = 0
<=> \(\left(2y+3\right)^2=-15\)<=> PT vô nghiệm
Với x = 3 => (1) <=> 12 + y + y2 = 3
<=> (y - 1)(y + 2) = 0
<=> \(\orbr{\begin{cases}y=1\\y=-2\end{cases}}\)
=> Hệ có 2 nghiệm (x ; y) = (1;1) ; (1 ; - 2)
\(\hept{\begin{cases}4x-y=5\left(1\right)\\16y^2-8xy+x^2-40xy+10x+25=0\left(2\right)\end{cases}}\)
(1) thay (2) => \(\left(4x-5\right)^2-8x\left(4x-5\right)^2+x^2-40x\left(4x-5\right)+10x+25=0\)
\(\Leftrightarrow16x^2-40x+25-32x^2+40x+x^2-160x^2+200x+10x+25=0\)
\(\Leftrightarrow-175x^2+210x+50=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{21+\sqrt{791}}{35}\Rightarrow y=\frac{-91+4\sqrt{791}}{35}\\x=\frac{21-\sqrt{791}}{35}\Rightarrow y=-\frac{91+4\sqrt{791}}{35}\end{cases}}\)