K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8

Để hpt có nghiệm thì: 

\(\dfrac{m}{4}\ne\dfrac{1}{-m}\Leftrightarrow m^2\ne-4\Leftrightarrow m\in R\)

\(\left\{{}\begin{matrix}mx+y=5\\4x-my=1\end{matrix}\right.< =>\left\{{}\begin{matrix}m^2x+my=5m\\4x-my=1\end{matrix}\right.< =>\left\{{}\begin{matrix}\left(m^2+4\right)x=5m+1\\mx+y=5\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}x=\dfrac{5m+1}{m^2+4}\\\dfrac{5m^2+m}{m^2+4}+y=5\end{matrix}\right.< =>\left\{{}\begin{matrix}x=\dfrac{5m+1}{m^2+4}\\y=5-\dfrac{5m^2+m}{m^2+4}\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}x=\dfrac{5m+1}{m^2+4}\\y=\dfrac{5m^2+20-5m^2-m}{m^2+4}\end{matrix}\right.< =>\left\{{}\begin{matrix}x=\dfrac{5m+1}{m^2+4}\\y=\dfrac{20-m}{m^2+4}\end{matrix}\right.\)

Ta có: 

\(2y=1-x=>2\cdot\dfrac{20-m}{m^2+4}=1-\dfrac{5m+1}{m^2+4}\\ \Leftrightarrow\dfrac{40-2m}{m^2+4}=\dfrac{m^2+4-5m-1}{m^2+4}\\ \Leftrightarrow40-2m=m^2-5m+3\\ \Leftrightarrow m^2-5m+3+2m-40=0\\ \Leftrightarrow m^2-3m-37=0\)  

\(\Delta=\left(-3\right)^2-4\cdot1\cdot\left(-37\right)=157>0\\ m_1=\dfrac{3+\sqrt{157}}{2}\\ m_2=\dfrac{3-\sqrt{157}}{2}\)

1 tháng 12 2021

\(\left\{{}\begin{matrix}mx-y=2\\x+my=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+m\left(mx-2\right)=1\\y=mx-2\end{matrix}\right.\\ \Leftrightarrow x\left(m^2+1\right)=2m+1\Leftrightarrow x=\dfrac{2m+1}{m^2+1}\\ \Leftrightarrow y=\dfrac{m\left(2m+1\right)}{m^2+1}-2=\dfrac{2m^2+m-2m^2-2}{m^2+1}=\dfrac{m-2}{m^2+1}\)

Ta có \(x+y=1\Leftrightarrow\dfrac{2m+1+m-2}{m^2+1}=1\)

\(\Leftrightarrow3m-1=m^2+1\\ \Leftrightarrow m^2-3m+2=0\\ \Leftrightarrow\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\)

1 tháng 2 2021

\(\left\{{}\begin{matrix}x+mx=2\\mx-2y=1\end{matrix}\right.\)

Nếu m=0 \(\Rightarrow\left\{{}\begin{matrix}x=2\\-2y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{-1}{2}< 0\end{matrix}\right.\) (L)

Nếu m≠0 \(\Rightarrow\left\{{}\begin{matrix}mx+m^2y=2m\left(1\right)\\mx-2y=1\left(2\right)\end{matrix}\right.\)

Trừ từng vế của (1) cho (2) ta được:

\(m^2y+2y=2m-1\) \(\Leftrightarrow\left(m^2+2\right)y=2m-1\) \(\Leftrightarrow y=\dfrac{2m-1}{m^2+2}\) Thay vào (2) ta được:

\(mx-2\cdot\dfrac{2m-1}{m^2+2}=1\) \(\Leftrightarrow mx=1+\dfrac{4m-2}{m^2+2}=\dfrac{m^2+2+4m-2}{m^2+2}=\dfrac{m\left(m+4\right)}{m^2+2}\) 

\(x=\dfrac{m+4}{m^2+2}\)

Vì x>0, y>0 \(\Rightarrow\left\{{}\begin{matrix}\dfrac{2m-1}{m^2+2}>0\\\dfrac{m+4}{m^2+2}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2m-1>0\\m+4>0\end{matrix}\right.\) Vì \(m^2+2\ge2>0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>\dfrac{1}{2}\\m>-4\end{matrix}\right.\) \(\Leftrightarrow m>\dfrac{1}{2}\) Vậy...

 

AH
Akai Haruma
Giáo viên
13 tháng 1

Lời giải:

$x+my=2\Rightarrow x=2-my$. Thay vào PT(2):

$m(2-my)-2y=1$

$\Leftrightarrow 2m-y(m^2+2)=1$

$\Leftrightarrow y=\frac{2m-1}{m^2+2}$

$x=2-my=2-\frac{2m^2-m}{m^2+2}=\frac{m+4}{m^2+2}$

Vậy hpt có nghiệm $(x,y)=(\frac{m+4}{m^2+2}; \frac{2m-1}{m^2+2})$

Để $x<0; y>0$

$\Leftrightarrow \frac{m+4}{m^2+2}<0$ và $\frac{2m-1}{m^2+2}>0$

$\Leftrightarrow m+4<0$ và $2m-1>0$ (do $m^2+2>0$)

$\Leftrightarrow m< -4$ và $m> \frac{1}{2}$  (vô lý)

Do đó không tồn tại $m$ thỏa mãn đề.

NV
13 tháng 1

Hệ có nghiệm duy nhất khi: \(\dfrac{1}{m}\ne\dfrac{m}{-2}\Rightarrow m^2\ne-2\) (luôn đúng)

\(\Rightarrow\) Hệ luôn có nghiệm duy nhất với mọi m

Khi đó: \(\left\{{}\begin{matrix}x+my=2\\mx-2y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x+2my=4\\m^2x-2my=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2+2\right)x=m+4\\y=\dfrac{mx-1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+4}{m^2+2}\\y=\dfrac{4m-2}{2\left(m^2+2\right)}\end{matrix}\right.\)

Nghiệm hệ thỏa mãn x<0, y<0 \(\Rightarrow\left\{{}\begin{matrix}\dfrac{m+4}{m^2+2}< 0\\\dfrac{4m-2}{2\left(m^2+2\right)}< 0\end{matrix}\right.\) (1)

Do \(m^2+2>0;\forall m\) nên (1) tương đương:

\(\left\{{}\begin{matrix}m+4< 0\\4m-2< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m< -4\\m< \dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow m< -4\)