K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2020

a)

\(\left\{{}\begin{matrix}\left(\sqrt{2}+1\right)x+y=\sqrt{2}-1\\2x-\left(\sqrt{2}-1\right)y=2\sqrt{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\left(\sqrt{2}-1\right)-\left(\sqrt{2}+1\right)x\\2x-\left(\sqrt{2}-1\right)y=2\sqrt{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\left(\sqrt{2}-1\right)-\left(\sqrt{2}+1\right)x\\2x-\left(\sqrt{2}-1\right)\left(\left(\sqrt{2}-1\right)-\left(\sqrt{2}+1\right)x\right)=2\sqrt{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\left(\sqrt{2}-1\right)-\left(\sqrt{2}+1\right)x\\x=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\left(\sqrt{2}-1\right)-\left(\sqrt{2}+1\right).1\\x=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-2\\x=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

Vậy hệ phương trình có tập nghiệm {1;-2}

b)

\(\left\{{}\begin{matrix}\sqrt{3}x-y=1\\5x+\sqrt{2}y=\sqrt{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\sqrt{3}x-1\\5x+\sqrt{2}y=\sqrt{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\sqrt{3}x-1\\5x+\sqrt{2}\left(\sqrt{3}x-1\right)=\sqrt{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\sqrt{3}x-1\\x=\frac{3\sqrt{3}+2\sqrt{2}}{19}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\sqrt{3}.\left(\frac{3\sqrt{3}+2\sqrt{2}}{19}\right)-1\\x=\frac{3\sqrt{3}+2\sqrt{2}}{19}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\frac{-10+2\sqrt{6}}{19}\\x=\frac{3\sqrt{3}+2\sqrt{2}}{19}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{3\sqrt{3}+2\sqrt{2}}{19}\\y=\frac{-10+2\sqrt{6}}{19}\end{matrix}\right.\)

Vậy hệ phương trình có tập nghiệm \(\left\{\frac{3\sqrt{3}+2\sqrt{2}}{19};\frac{-10+2\sqrt{6}}{19}\right\}\)

c)

\(\left\{{}\begin{matrix}2x+y=5\\3x-2y=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x+2y=10\\3x-2y=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}7x=13\\4x+2y=10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{13}{7}\\4.\frac{13}{7}+2y=10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{13}{7}\\y=\frac{9}{7}\end{matrix}\right.\)

Vậy hệ phương trình có tập nghiệm \(\left\{\frac{13}{7};\frac{9}{7}\right\}\)

Cô giỏi Toán quá !

20 tháng 9 2023

Xem lại giúp tớ dấu căn ở câu c và d nhé.  

loading...  

a) Ta có: \(\left\{{}\begin{matrix}-x+2y=3\\3x+y=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-3x+6y=9\\3x+y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7y=8\\-x+2y=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{8}{7}\\-x=3-2y=3-2\cdot\dfrac{8}{7}=\dfrac{5}{7}\end{matrix}\right.\)

hay \(\left\{{}\begin{matrix}x=-\dfrac{5}{7}\\y=\dfrac{8}{7}\end{matrix}\right.\)

Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=-\dfrac{5}{7}\\y=\dfrac{8}{7}\end{matrix}\right.\)

b) Ta có: \(\left\{{}\begin{matrix}2x+2\sqrt{3}\cdot y=1\\\sqrt{3}x+2y=-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{3}x+6y=\sqrt{3}\\2\sqrt{3}x+4y=-10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2y=\sqrt{3}+10\\\sqrt{3}x+2y=-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{\sqrt{3}+10}{2}\\x\sqrt{3}+2\cdot\dfrac{\sqrt{3}+10}{2}=-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{\sqrt{3}+10}{2}\\x\sqrt{3}=-5-\sqrt{3}-10=-15-\sqrt{3}\end{matrix}\right.\)

hay \(\left\{{}\begin{matrix}x=-1-5\sqrt{3}\\y=\dfrac{\sqrt{3}+10}{2}\end{matrix}\right.\)

Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=-1-5\sqrt{3}\\y=\dfrac{\sqrt{3}+10}{2}\end{matrix}\right.\)

24 tháng 1 2021

a, \(\left\{{}\begin{matrix}\\6x+2y=-2\end{matrix}\right.-6x+12y=18}\)

2 tháng 2 2021

\(\left\{{}\begin{matrix}\dfrac{x+2}{y-1}=\dfrac{x-4}{y+2}\\\dfrac{2x+3}{y-1}=\dfrac{4x+1}{2y+1}\end{matrix}\right.\)

 

\(\left\{{}\begin{matrix}\left(x+2\right)\left(y+2\right)=\left(y-1\right)\left(x-\text{4}\right)\\\left(2x+3\right)\left(2y+1\right)=\left(y-1\right)\left(4x+1\right)\end{matrix}\right.\)

 

\(\left\{{}\begin{matrix}xy+2x+2y+4=xy-4y-x+4\\4xy+2x+6y+3=4xy-4x+y-1\end{matrix}\right.\)

 

\(\left\{{}\begin{matrix}3x+6y=0\\6x+5y=-4\end{matrix}\right.\)

 

\(\left\{{}\begin{matrix}x=-\dfrac{8}{7}\\y=\dfrac{4}{7}\end{matrix}\right.\)(TM)

2 tháng 2 2021

\(\left\{{}\begin{matrix}5\left(x-y\right)-3\left(2x+3y\right)=12\\3\left(x+2y\right)-4\left(x+2y\right)=5\end{matrix}\right.\)

\(\left\{{}\begin{matrix}5x-5y-6x-9y=12\\3x+6y-4x-8y=5\end{matrix}\right.\)

\(\left\{{}\begin{matrix}-x-14y=12\\-x-2y=5\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=-\dfrac{26}{3}\\y=-\dfrac{7}{12}\end{matrix}\right.\)

Vậy HPT có nghiệm (x;y) = (\(-\dfrac{26}{3};-\dfrac{7}{12}\))

2) Ta có: \(\left\{{}\begin{matrix}\sqrt{3x-1}-\sqrt{2y+1}=1\\2\sqrt{3x-1}+3\sqrt{2y+1}=12\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{3x-1}-2\sqrt{2y+1}=2\\2\sqrt{3x-1}+3\sqrt{2y+1}=12\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-5\sqrt{2y+1}=-10\\\sqrt{3x-1}-\sqrt{2y+1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2y+1}=2\\\sqrt{3x-1}-2=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2y+1=4\\3x-1=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2y=3\\3x=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3}{2}\\x=\dfrac{10}{3}\end{matrix}\right.\)

Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=\dfrac{10}{3}\\y=\dfrac{3}{2}\end{matrix}\right.\)

3) Ta có: \(\left\{{}\begin{matrix}\sqrt{x-2}+\sqrt{y-3}=3\\2\sqrt{x-2}-3\sqrt{y-3}=-4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-2}+2\sqrt{y-3}=6\\2\sqrt{x-2}-3\sqrt{y-3}=-4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5\sqrt{y-3}=10\\\sqrt{x-2}+\sqrt{y-3}=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{y-3}=2\\\sqrt{x-2}+2=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y-3=4\\x-2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=7\\x=3\end{matrix}\right.\)

Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=3\\y=7\end{matrix}\right.\)

31 tháng 10 2019

1/PT (1) cho ta nhân tử x - y - 1:)

\(\left\{{}\begin{matrix}\left(17-3x\right)\sqrt{5-x}+\left(3y-14\right)\sqrt{4-y}=0\left(1\right)\\2\sqrt{2x+y+5}+3\sqrt{3x+2y+11}=x^2+6x+13\left(2\right)\end{matrix}\right.\)

ĐK: \(x\le5;y\le4\); \(2x+y+5\ge0;3x+2y+11\ge0\)

PT (1) \(\Leftrightarrow\left(17-3x\right)\left(\sqrt{5-x}-\sqrt{4-y}\right)-3\left(x-y-1\right)\sqrt{4-y}=0\)

\(\Leftrightarrow\left(3x-17\right)\left(\frac{x-y-1}{\sqrt{5-x}+\sqrt{4-y}}\right)-3\left(x-y-1\right)\sqrt{4-y}=0\)

\(\Leftrightarrow\left(x-y-1\right)\left(\frac{3x-17}{\sqrt{5-x}+\sqrt{4-y}}-3\sqrt{4-y}\right)=0\)

Dễ thấy cái ngoặc to < 0

Do đó x= y + 1

Thay xuống PT (2):\(y^2+8y+20=2\sqrt{3y+7}+3\sqrt{5y+14}\)\(\left(y+1\right)\left(y+2\right)=y^2+3y+2\)

ĐK: \(y\ge-\frac{7}{3}\) (để các căn thức được thỏa mãn)

PT (2) \(\Leftrightarrow y^2+3y+2+2\left(y+3-\sqrt{3y+7}\right)+3\left(y+4-\sqrt{5y+14}\right)=0\)

\(\Leftrightarrow\left(y^2+3y+2\right)\left(1+\frac{2}{y+3+\sqrt{3y+7}}+\frac{3}{y+4+\sqrt{5y+14}}\right)=0\)

Cái ngoặc to > 0 =>...

P/s: Is that true? Ko đúng thì chịu thua-_- Mất nửa tiếng đồng hồ để gõ bài này đấy:(

31 tháng 10 2019

2/ĐK: \(x\ge-y;y\ge0\)

PT (1) \(\Leftrightarrow x\left(x+y\right)+\sqrt{x+y}=2y^2+\sqrt{2y}\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)+y\left(x-y\right)+\sqrt{x+y}-\sqrt{2y}=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+2y+\frac{1}{\sqrt{x+y}+\sqrt{2y}}\right)=0\)

Cái ngoặc to \(\ge y+\frac{1}{\sqrt{x+y}+\sqrt{2y}}>0\).

Do đó x = y \(\ge0\)

Thay xuống pt dưới: \(x^3-5x^2+14x-4=6\sqrt[3]{x^2-x+1}\)

Lập phương hai vế lên ra pt bậc 6, tuy nhiên cứ yên tâm, nghiệm rất đẹp: x = 1:)

Em đưa kết quả luôn: \(\left(x-1\right)\left(x^2-4x+7\right)\left(x^6-10x^5+56x^4-160x^3+272x^2-64x+40\right)=0\)

P/s: khúc cuối em ko còn cách nào khác nên đành lập phương:((