K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2020

Hệ phương trình

\(\Leftrightarrow\hept{\begin{cases}\left(x-3\right)^3=0\\\left(y-3\right)^3=0\\\left(z-3\right)^3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=3\\z=3\end{cases}}}\)

1 tháng 3 2020

\(hpt=>\hept{\begin{cases}x^3+y^3-9y^2+27y-27=y^3.\\y^3+z^3-9z^2-27x-27=z^3.\\z^3+x^3-9y^2-27y-27=x^3.\end{cases}}\)

\(=>\hept{\begin{cases}x^3=y^3-\left(y-3\right)^3\\y^3=z^3-\left(z-3\right)^3\\z^3=x^3-\left(x-3\right)^3\end{cases}}\)

Do vai trong của x, y , z như nhau nên ta giả sử x=max{x,y,z}

Do giả sử ta có 

\(=>\hept{\begin{cases}x^3\ge z^3\\-\left(y-3\right)^3\ge\left(x-y\right)^3\end{cases}}\)

=>\(\hept{\begin{cases}y^3-\left(y-3\right)^3\ge x^3-\left(x-3\right)^3\\-\left(y-3\right)^3\ge-\left(x-3\right)^3\end{cases}}\)

=>\(y^3\ge x^3=>y\ge x\)

Từ đây , ta suy ra x=y=z

Thay zô 1 pt bất kì tao tìm được x=y=z=3

Vậy nghiệm duy nhất của hệ phương trình là x=y=z=3

28 tháng 1 2016

\(hpt\Leftrightarrow\int^{x^3=9y^2-27y+27\left(1\right)}_{\int^{y^3=9z^2-27z+27}_{z^3=9x^2-27x+27}}\)

Vì vai trò x ; y; z bình đẳng trong hệ ta g/s \(x\le y\le z\) (I)

Với  \(x\le y\Rightarrow9x^2-27x+27\le9y^2-27y+27\Leftrightarrow z^3\le x^3\Leftrightarrow z\le x\) ( II )

\(x\le z\Rightarrow9x^2-27x+27\le9z^2-27z+27\Leftrightarrow z^3\le y^3\Leftrightarrow z\le y\) ( III )

Từ (I) ; ( II ) ; (III ) => x = y =z 

Thay x = y vào pt (1) giải ra nghiệm 

30 tháng 1 2016

bài này mình cộng 3 hệ lại cuối cùng được ntn:

\(\left(x-3\right)^3+\left(y-3\right)^3+\left(z-3\right)^3=0\) 

đến đây chả biết làm tn :3 ko nhớ HĐT \(A^3+B^3+C^3\) bằng gì nữa @@

26 tháng 4 2022

????  

xin lỗi nha ! 

mình mới học lớp 3 

mà bài này khó nắm 

26 tháng 4 2022

ko bt thì ko nhắn nha

17 tháng 7 2023

2b. ĐKXĐ : \(x\ge-5\) (*)

Ta có \(\sqrt{x+5}=x^2-5\)

\(\Leftrightarrow4x^2-20-4\sqrt{x+5}=0\)

\(\Leftrightarrow4x^2+4x+1-4.\left(x+5\right)-4\sqrt{x+5}-1=0\)

\(\Leftrightarrow\left(2x+1\right)^2-\left(2\sqrt{x+5}+1\right)^2=0\)

\(\Leftrightarrow\left(x+1+\sqrt{x+5}\right)\left(x-\sqrt{x+5}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=-\sqrt{x+5}\left(1\right)\\x=\sqrt{x+5}\left(2\right)\end{matrix}\right.\)

Giải (1) có (1) \(\Leftrightarrow\left(x+1\right)^2=x+5\)  ;  ĐK: \(\left(x\le-1\right)\)

\(\Leftrightarrow x^2+x-4=0\Leftrightarrow x=\dfrac{-1\pm\sqrt{17}}{2}\) 

Kết hợp (*) và ĐK được \(x=\dfrac{-1-\sqrt{17}}{2}\) là nghiệm phương trình gốc

Giải (2) có (2) <=> \(x^2-x-5=0\) ; ĐK : \(x\ge0\)

\(\Leftrightarrow x=\dfrac{1\pm\sqrt{21}}{2}\)

Kết hợp (*) và ĐK được \(x=\dfrac{1+\sqrt{21}}{2}\) là nghiệm phương trình gốc

Tập nghiệm \(S=\left\{\dfrac{-1-\sqrt{17}}{2};\dfrac{1+\sqrt{21}}{2}\right\}\)

17 tháng 7 2023

2c. ĐKXĐ \(x\ge1\) (*)

Đặt \(\sqrt{x-1}=a;\sqrt[3]{2-x}=b\left(a\ge0\right)\) (1) 

Ta có \(\sqrt{x-1}-\sqrt[3]{2-x}=5\Leftrightarrow a-b=5\)

Từ (1) có \(a^2+b^3=1\) (2)

Thế a = b + 5 vào (2) ta được 

\(b^3+\left(b+5\right)^2=1\Leftrightarrow b^3+b^2+10b+24=0\)

\(\Leftrightarrow b^3+8+b^2+10b+16=0\)

\(\Leftrightarrow\left(b+2\right).\left(b^2-b+12\right)=0\)

\(\Leftrightarrow b=-2\) (Vì \(b^2-b+12=\left(b-\dfrac{1}{2}\right)^2+\dfrac{47}{4}>0\forall b\)

Với b = -2 \(\Leftrightarrow\sqrt[3]{2-x}=-2\Leftrightarrow x=10\) (tm) 

Tập nghiệm \(S=\left\{10\right\}\)

NV
24 tháng 11 2018

Biến đổi pt bên dưới:

\(27\left(x+y\right)+x^3+y^3+8=27x^3+27x^2+9x+1\)

\(\Leftrightarrow27\left(x+y\right)+\left(x+y\right)\left(\left(x+y\right)^2-3xy\right)+8=\left(3x+1\right)^3\) (1)

Biến đổi 1 xíu pt bên trên: \(xy=5-2\left(x+y\right)\)

Đặt \(\left\{{}\begin{matrix}x+y=a\\xy=b\end{matrix}\right.\) \(\Rightarrow b=5-2a\) thế vào (1) ta được:

\(27a+a\left(a^2-3\left(5-2a\right)\right)+8=\left(3x+1\right)^3\)

\(\Leftrightarrow27a+a^3+6a^2-15a+8=\left(3x+1\right)^3\)

\(\Leftrightarrow a^3+6a^2+12a+8=\left(3x+1\right)^3\Leftrightarrow\left(a+2\right)^3=\left(3x+1\right)^3\)

\(\Leftrightarrow a+2=3x+1\Leftrightarrow x+y+2=3x+1\Leftrightarrow y=2x-1\)

Thế vào pt đầu:

\(2x+2\left(2x-1\right)+x\left(2x-1\right)=5\Leftrightarrow2x^2+5x-7=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\Rightarrow y=1\\x=-\dfrac{7}{2}\Rightarrow y=-8\end{matrix}\right.\)

Vậy hệ đã cho có 2 cặp nghiệm \(\left(x;y\right)=\left(1;1\right);\left(-\dfrac{7}{2};-8\right)\)