Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}x^4+y^4\ge2x^2y^2\\y^4+z^4\ge2y^2z^2\\x^4+z^4\ge2x^2z^2\end{matrix}\right.\) \(\Rightarrow x^4+y^4+z^4\ge x^2y^2+y^2z^2+x^2z^2\)
Lại có:
\(\left\{{}\begin{matrix}x^2y^2+y^2z^2\ge2xy^2z\\x^2y^2+x^2z^2\ge2x^2yz\\y^2z^2+x^2z^2\ge2xyz^2\end{matrix}\right.\) \(\Rightarrow x^2y^2+y^2z^2+x^2z^2\ge xy^2z+x^2yz+xyz^2\)
\(\Rightarrow x^2y^2+y^2z^2+x^2z^2\ge xyz\left(x+y+z\right)=xyz\)
\(\Rightarrow x^4+y^4+z^4\ge xyz\)
Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{3}\)
\(\Rightarrow\) Hệ có nghiệm duy nhất \(\left(x;y;z\right)=\left(\dfrac{1}{3};\dfrac{1}{3};\dfrac{1}{3}\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy+x+y+1=2\\yz+y+z+1=5\\zx+z+x+1=10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)\left(y+1\right)=2\\\left(y+1\right)\left(z+1\right)=5\\\left(z+1\right)\left(x+1\right)=10\end{matrix}\right.\) (1)
Nhân vế với vế: \(\left[\left(x+1\right)\left(y+1\right)\left(z+1\right)\right]^2=100\)
\(\Leftrightarrow\left(x+1\right)\left(y+1\right)\left(z+1\right)=10\) (2)
Chia vế cho vế của (2) cho từng pt của (1):
\(\Rightarrow\left\{{}\begin{matrix}z+1=5\\x+1=2\\y+1=1\end{matrix}\right.\) \(\Rightarrow\left(x;y;z\right)=\left(1;0;4\right)\) (loại)
Hệ vô nghiệm do \(y>0\)
Pt đầu chắc là sai đề (chắc chắn), bạn kiểm tra lại
Với pt sau:
Nhận thấy một ẩn bằng 0 thì 2 ẩn còn lại cũng bằng 0, do đó \(\left(x;y;z\right)=\left(0;0;0\right)\) là 1 nghiệm
Với \(x;y;z\ne0\)
Từ pt đầu ta suy ra \(y>0\) , từ đó suy ra \(z>0\) từ pt 2 và hiển nhiên \(x>0\) từ pt 3
Do đó:
\(\left\{{}\begin{matrix}y=\dfrac{2x^2}{x^2+1}\le\dfrac{2x^2}{2x}=x\\z=\dfrac{3y^3}{y^4+y^2+1}\le\dfrac{3y^3}{3\sqrt[3]{y^4.y^2.1}}=y\\x=\dfrac{4z^4}{z^6+z^4+z^2+1}\le\dfrac{4z^4}{4\sqrt[4]{z^6z^4z^2}}=z\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y\le x\\z\le y\\x\le z\end{matrix}\right.\) \(\Rightarrow x=y=z\)
Dấu "=" xảy ra khi và chỉ khi \(x=y=z=1\)
Vậy nghiệm của hệ là \(\left(x;y;z\right)=\left(0;0;0\right);\left(1;1;1\right)\)
ĐKXĐ: \(x;y;z\ge0\)
Đặt \(\left(\dfrac{\sqrt{x}}{5};\dfrac{\sqrt{y}}{4};\dfrac{\sqrt{z}}{3}\right)=\left(a;b;c\right)>0\)
\(\Rightarrow\left\{{}\begin{matrix}5a+4b+3c=12\\10a+20b+30c=60abc\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}5a+4b+3c=12\\a+2b+3c=6abc\end{matrix}\right.\)
Ta có:
\(12=\left(a+a+a+a+a\right)+\left(b+b+b+b\right)+\left(c+c+c\right)\ge12\sqrt[12]{a^5b^4c^3}\)
\(\Rightarrow a^5b^4c^3\le1\) (1)
\(6abc=a+b+b+c+c+c\ge6\sqrt[6]{ab^2c^3}\)
\(\Rightarrow a^6b^6c^6\ge ab^2c^3\Rightarrow a^5b^4c^3\ge1\) (2)
(1);(2) \(\Rightarrow a^5b^4c^3=1\)
Đẳng thức xảy ra khi và chỉ khi \(a=b=c=1\)
\(\Rightarrow\left(x;y;z\right)=\left(25;16;9\right)\)
\(x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\ge xyz\left(x+y+z\right)=xyz\)
Dấu = xảy ra khi \(x=y=z=\dfrac{1}{3}\)