Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x^2-2x\right)-\left(y^2-4y\right)=1\\\left(x^2-2x\right)^2+2=y\left(x-2\right)x\left(y-4\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x^2-2x\right)-\left(y^2-4y\right)=1\\\left(x^2-2x\right)^2+2=\left(x^2-2x\right)\left(y^2-4y\right)\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x^2-2x=u\\y^2-4y=v\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2u-v=1\\u^2+2=uv\end{matrix}\right.\) \(\Rightarrow u^2+2=u\left(2u-1\right)\)
\(\Leftrightarrow u^2-u-2=0\Leftrightarrow...\)
Gõ đề có sai không ạ?
\(\left\{{}\begin{matrix}\sqrt{3+2x^2y-x^4y^2}+x^4\left(1-2x^2\right)=y^4\\1+\sqrt{1+\left(x-y\right)^2}=x^3\left(x^3-x+2y^2\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{4-\left(1-x^2y\right)^2}=2x^6-x^4+y^4\\-\sqrt{1+\left(x-y\right)^2}=1-x^6+x^4-2x^3y^2\end{matrix}\right.\)
Cộng theo vế HPT2
\(\sqrt{4-\left(1-x^2y\right)^2}-\sqrt{1+\left(x-y\right)^2}=\left(x^3-y^2\right)^2+1\)
\(\Leftrightarrow\sqrt{4-\left(1-x^2y\right)^2}=\sqrt{1+\left(x-y\right)^2}+\left(x^3-y^2\right)^2+1\) (1)
Có:
\(\left\{{}\begin{matrix}\sqrt{4-\left(1-x^2y\right)^2}\le2\\\sqrt{1+\left(x-y\right)^2}+\left(x^2-y^2\right)^2+1\ge2\end{matrix}\right.\)
\(\Rightarrow\) (1) xảy ra \(\Leftrightarrow\) \(\left\{{}\begin{matrix}\sqrt{4-\left(1-x^2y\right)^2}=2\\\sqrt{1+\left(x-y\right)^2}=1\\\left(x^3-y^2\right)^2=0\end{matrix}\right.\Leftrightarrow x=y=1\)
Câu 1.
Điều kiện: \(x^2\ge2y+1\)
Từ $(1)$ ta được \(\left(x^2-2y\right)\left(x-y\right)=0\Leftrightarrow\left[{}\begin{matrix}x^2=2y\left(L\right)\\x=y\end{matrix}\right.\)
Khi đó $(2)$ \(\Leftrightarrow2\sqrt{x^2-2x-1}+\sqrt[3]{x^3-14}=x-2\Leftrightarrow2\sqrt{x^2-2x-1}+\sqrt[3]{x^3-14}-\left(x-2\right)=0\)
\(\begin{array}{l} \Leftrightarrow 2\sqrt {{x^2} - 2x - 1} + \dfrac{{{x^3} - 14 - {{\left( {x - 2} \right)}^3}}}{{\sqrt[3]{{{{\left( {{x^3} - 14} \right)}^2}}} + \sqrt[3]{{\left( {{x^3} - 14} \right)}}\left( {x - 2} \right) + {{\left( {x - 2} \right)}^2}}} = 0\\ \Leftrightarrow 2\sqrt {{x^2} - 2x + 1} + \dfrac{{6{x^2} - 12x - 6}}{{\sqrt[3]{{{{\left( {{x^3} - 14} \right)}^2}}} + \sqrt[3]{{\left( {{x^3} - 14} \right)}}\left( {x - 2} \right){{\left( {x - 2} \right)}^2}}} = 0\\ \Leftrightarrow 2\sqrt {{x^2} - 2x + 1} \left[ {1 + \dfrac{{3\sqrt {{x^2} - 2x - 1} }}{{\sqrt[3]{{{{\left( {{x^3} - 14} \right)}^2}}} + \sqrt[3]{{\left( {{x^3} - 14} \right)}}\left( {x - 2} \right){{\left( {x - 2} \right)}^2}}}} \right] = 0 \Leftrightarrow \sqrt {{x^2} - 2x - 1} = 0 \end{array} \)
Từ đó ta được \(x^2-2x-1=0\Leftrightarrow\left[{}\begin{matrix}x=1+\sqrt{2}\Rightarrow y=1+\sqrt{2}\\x=1-\sqrt{2}\Rightarrow y=1-\sqrt{2}\end{matrix}\right.\)
Vậy hệ phương trình đã cho có nghiệm $(x;y)=$\(\left\{\left(1+\sqrt{2};1+\sqrt{2}\right),\left(1-\sqrt{2};1-\sqrt{2}\right)\right\}\)
Câu 2.
Điều kiện: \(y \ge 0,x \ge -2\)
Từ phương trình $(1)$ tương đương:
$$2\sqrt{x+y^2+y+3}=3\sqrt{y}+\sqrt{x+2}$$
Ta có:
$$3\sqrt y + \sqrt {x + 2} = \sqrt 3 .\sqrt {3y} + 1.\sqrt {x + 2} \le 2\sqrt {3y + x + 2}$$
Ta chứng minh:
$$2\sqrt {3y + x + 2} \le 2\sqrt {x + {y^2} + y + 3} \Leftrightarrow {\left( {y - 1} \right)^2} \ge 0$$
Đẳng thức xảy ra khi $y=1$ và \(\sqrt{y}=\sqrt{x+2}\Rightarrow x=-1\)
Thay vào phương trình $(2)$ thấy thỏa mãn.
Vậy nghiệm hệ phương trình $(x;y)=(-1;1)$
b)\(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\)
\(\Rightarrow\left(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}\right)^2=\left(3\left(x+y\right)\right)^2\)
\(\Leftrightarrow\sqrt{\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)}=x^2+7xy+y^2\)
\(\Rightarrow\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)=\left(x^2+7xy+y^2\right)^2\)
\(\Leftrightarrow9\left(x-y\right)^2\left(x+y\right)^2=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-y\end{matrix}\right.\)
\(\rightarrow\left(x;y\right)\in\left\{\left(0;0\right),\left(1;1\right)\right\}\)
Lời giải:
Nhân chéo 2 pt ta có:
$20y^2(x^2-y^2)=3x^2(x^2+y^2)$
$\Leftrightarrow 3x^4+20y^4-17x^2y^2=0$
$\Leftrightarrow (3x^2-5y^2)(x^2-4y^2)=0$
$\Rightarrow x=\pm \sqrt{\frac{5}{3}}y$ hoặc $x=\pm 2y$
Đến đây thay vào pt ban đầu để tìm $x,y$