K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2022

<=>\(\left\{{}\begin{matrix}4x+3y=11\\4x-y=7\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}4y=4\\4x-y=7\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}y=1\\4x-1=7\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}y=1\\4x=8\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}y=1\\x=2\end{matrix}\right.\)

vậy hệ đã cho có nghiệm (x;y) = (2;1)

18 tháng 5 2021

3(2x+y)-2(3x-2y)=3.19-11.2

6x+3y-6x+4y=57-22

7y=35

y=5

thay vào :

2x+y=19

2x+5=19

2x=14

x=7

2/ x2+21x-1x-21=0

x(x+21)-1(x+21)=0

(x+21)(x-1)=0

TH1 x+21=0

x=-21

TH2 x-1=0

x=1

vậy x = {-21} ; {1}

3/ x4-16x2-4x2+64=0

x2(x2-16)-4(x2-16)=0

(x2-16)-(x2-4)=0

TH1 x2-16=0

x2=16

<=>x=4;-4

TH2 x2-4=0

x2=4

x=2;-2

18 tháng 5 2021

Bài 1 : 

\(\hept{\begin{cases}2x+y=19\\3x-2y=11\end{cases}\Leftrightarrow\hept{\begin{cases}4x+2y=38\\3x-2y=11\end{cases}\Leftrightarrow\hept{\begin{cases}7x=49\\2x+y=19\end{cases}}}}\)

\(\Leftrightarrow\hept{\begin{cases}x=7\\2x+y=19\end{cases}}\)Thay vào x = 7 vào pt 2 ta được : 

\(14+y=19\Leftrightarrow y=5\)Vậy hệ pt có một nghiệm ( x ; y ) = ( 7 ; 5 )

Bài 2 : 

\(x^2+20x-21=0\)

\(\Delta=400-4\left(-21\right)=400+84=484\)

\(x_1=\frac{-20-22}{2}=-24;x_2=\frac{-20+22}{2}=1\)

Bài 3 : Đặt \(x^2=t\left(t\ge0\right)\)

\(t^2-20t+64=0\)

\(\Delta=400+4.64=656\)

\(t_1=\frac{20+4\sqrt{41}}{2}\left(tm\right);t_2=\frac{20-4\sqrt{41}}{2}\left(ktm\right)\)

Theo cách đặt : \(x^2=\frac{20+4\sqrt{41}}{2}\Rightarrow x=\sqrt{\frac{20+4\sqrt{41}}{2}}=\frac{\sqrt{20\sqrt{2}+4\sqrt{82}}}{2}\)

24 tháng 3 2023

\(Đặt:\dfrac{1}{y+2}=a\left(y\ne-2\right)\\ Hpt\Leftrightarrow\left\{{}\begin{matrix}2x+12a=5\\3x-4a=2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2x+12a=5\\9x-12a=6\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}11x=11\\3x-4a=2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\3.1-4a=2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\a=\dfrac{1}{4}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\\ Vậy:\left(x;y\right)=\left(1;2\right)\)

18 tháng 5 2021

\(\hept{\begin{cases}3x+y=14\\2x-y=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3x+y=14\\5x=15\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=3\\y=5\end{cases}}\)

Vậy hệ pt có nghiệm (x,y) =( 3,5) 

18 tháng 5 2021

\(\hept{\begin{cases}3x+y=14\\2x-y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}5x=15\\3x+y=14\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\3x+y=14\end{cases}}}\)

Thay x = 3 vào pt 2 ta được 

\(\left(2\right)\Rightarrow9+y=14\Leftrightarrow y=5\)

Vậy hệ pt có một nghiệm là ( x ; y ) = ( 3 ; 5 )

28 tháng 3 2023

\(\left\{{}\begin{matrix}2x+y=3\\3x+2y=4\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}2.(2x+y)=3.2\\3x+2y=4\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}4x+2y=6\\3x+2y=4\end{matrix}\right.\)

⇒ \(\left\{{}\begin{matrix}4x+2y-3x-2y=6-4\\3x+2y=4\end{matrix}\right.\)  ⇒ \(\left\{{}\begin{matrix}x=2\\3x+2y=4\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=2\\3.2+2y=4\end{matrix}\right.\)

⇒ \(\left\{{}\begin{matrix}x=2\\2y=-2\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)

Vậy (\(x;y\)) =( 2; -1)

18 tháng 5 2021

1.      \(2x^2-3x-5=0\)

\(\Leftrightarrow\left(2x-5\right)\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x-5=0\\x+1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2,5\\x=-1\end{cases}}\)

Vậy tập ngiệm của phương trình là \(S=\left\{2,5;-1\right\}\)

18 tháng 5 2021

2x2-3x-5=0

2x2+2x-5x-5=0

2x(x+1)+5(x+1)=0

(x+1)(2x+5)=0

TH1 x+1=0 <=>x=-1

TH2 2x+5=0<=>2x=-5<=>x=-5/2

2. ta có:

2(x-2y)-(2x+y)=-1.2-8

2x-4y-2x-y=-2-8

-5y=-10

y=2

thay vào 

x-2y=-1 ( với y=2)

<=> x-2.2=-1

x-4=-1

x=3

14 tháng 5 2021

đk: \(y\ge1\)

Ta có: \(\hept{\begin{cases}2\left(x+2\right)-\sqrt{y-1}=6\\5\left(x+2\right)-2\sqrt{y-1}=16\end{cases}}\Leftrightarrow\hept{\begin{cases}4\left(x+2\right)-2\sqrt{y-1}=12\\5\left(x+2\right)-2\sqrt{y-1}=16\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+2=4\\2\left(x+2\right)-\sqrt{y-1}=6\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\\sqrt{y-1}=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=2\\y-1=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=5\end{cases}}\)

Vậy \(\hept{\begin{cases}x=2\\y=5\end{cases}}\)

27 tháng 4 2022

\(\left\{{}\begin{matrix}\dfrac{3}{x-1}+\dfrac{4}{y}=13\\\dfrac{2}{x-1}-\dfrac{5}{y}=1\end{matrix}\right.\)(1)

ĐK: \(\left\{{}\begin{matrix}x-1\ne0\\y\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\y\ne0\end{matrix}\right.\)

Đặt \(u=\dfrac{1}{x-1};v=\dfrac{1}{y}\)

\(\left(1\right)\Rightarrow\left\{{}\begin{matrix}3u+4v=13\\2u-5v=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6u+8v=26\\6u-15v=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}23v=23\\2u-5v=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}v=1\\2u=1-5v=1+5.1=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}v=1\\u=\dfrac{6}{2}=3\end{matrix}\right.\)

- Khi u= 3, ta có \(\dfrac{1}{x-1}=3\Leftrightarrow1=3\left(x-1\right)\Leftrightarrow1=3x-3\)

\(\Leftrightarrow3x=4\Leftrightarrow x=\dfrac{4}{3}\)(thỏa mãn)

- Khi v= 1, ta có: \(\dfrac{1}{y}=1\Leftrightarrow y=1\)(thỏa mãn)

Vậy nghiệm của hệ phương trình là: \(\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=1\end{matrix}\right.\)

28 tháng 3 2023

  \(\left\{{}\begin{matrix}x-3y=5\\2x+3y=1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x-3y+2x+3y=5+1\\2x+3y=1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}3x=6\\2x+3y=1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=6:3\\2x+3y=1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=2\\2x+3y=1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=2\\2.2+3y=1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=2\\3y=1-4\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=2\\3y=-3\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)

Vậy (\(x\);y) =(2; -1)