K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2017

tru ve vs ve 2 pt ta dc : x(x^2-2x+1)-y(y^2-2y+1)=3Y-3X...X^3 - 2X^2 +X - Y^3 + 2Y^ -Y-3Y+3X=0...X^3-Y^3-2X^2+2Y^2+4X-4Y=0...          (X-Y)(X^2+XY+Y^2) -2(X-Y)(X+Y) +4(X-Y)=0...(X-Y)(X^2+Y^2+XY-2X-2Y+4)=0                                                                                     VOI X-Y=0...X=Y...THAY VAO PT X(X-1)^2=3Y-1 TA DUOC X^3-2X^2 +X=3X-1 SUYRA X VA Y                                                          VOI X^2+Y^2+XY-2X-2Y+4=0 ...2X^2+2Y^2+2XY -4X -4Y +8=0.2=0...(X^2+2XY+Y^2) + (X^2-4X+4)+(Y^2-4Y+4)=0...                         A=(X+Y)^2+(X-2)^2+(Y-2)^2=0...MA (X+Y)^2>=0, (X-2)^2>=0 ,(Y-2)^2>=0 NEN A>=0 . DAU = XRA KHI X=Y,X=2,Y=2 HAY X=Y=2              VAY HPT CO 2 CAP NGHIEM

21 tháng 2 2019

Câu 1: ĐK: x khác -1/2, y khác -2

Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=t\) Từ phương trình thứ nhất ta có:

\(t+\frac{1}{t}=2\Leftrightarrow t^2-2t+1=0\Leftrightarrow t=1\)

=> \(\sqrt[3]{\frac{2x+1}{y+2}}=1\Leftrightarrow2x+1=y+2\Leftrightarrow2x-y=1\)

Vậy nên ta có hệ phương trình cơ bản: \(\hept{\begin{cases}2x-y=1\\4x+3y=7\end{cases}}\)Em làm tiếp nhé>

21 tháng 2 2019

\(1,ĐKXĐ:\hept{\begin{cases}y\ne-2\\x\ne-\frac{1}{2}\end{cases}}\)

Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=a\left(a\ne0\right)\)

\(Pt\left(1\right)\Leftrightarrow a+\frac{1}{a}=2\)

             \(\Leftrightarrow a^2+1=2a\)

             \(\Leftrightarrow\left(a-1\right)^2=0\)

            \(\Leftrightarrow a=1\)

           \(\Leftrightarrow\sqrt[3]{\frac{2x+1}{y+2}}=1\)

5 tháng 2 2020

a) \(\hept{\begin{cases}x^2-3xy+y^2=-1\left(1\right)\\3x^2-xy+3y^2=13\left(2\right)\end{cases}}\) 

Lấy (2) trừ (1)

\(\Rightarrow x^2+xy+y^2=7\) (3)

Từ (3) và (2)

\(\Leftrightarrow3x^2+3y^2-13+x^2+xy+y^2=7\)

\(\Leftrightarrow x^2+y^2=5\)(4)

Thay( 4) vào (1)

\(\Rightarrow xy=\frac{10}{3}\) 

Thay xy vào (1)

\(\Rightarrow\hept{\begin{cases}\left(x-y\right)^2=\frac{7}{3}\\\left(x+y\right)^2=\frac{47}{3}\end{cases}}\)

=> tìm đc x ; y

cho mk hỏi: bạn lấy 2() trừ (1) mà sao ra x + xy + y2  vậy?

7 tháng 1 2019

i will chịu

20 tháng 10 2020

ĐK: \(x,y\ne0\)

Hệ pt tương đương với:

\(\hept{\begin{cases}\frac{2}{x}=2y^4-2x^4+3y^4+3x^4+10x^2y^2\\\frac{1}{y}=3y^4+3x^4-2y^4+2x^4+10x^2y^2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2=5y^4x+x^5+10x^3y^2\\1=5x^4y+y^5+10x^2y^3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2+1=x^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4+y^5\\2-1=x^5-5x^4y+10x^3y^2-10x^2y^3+5xy^4-y^5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^5=3\\\left(x-y\right)^5=1\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=\sqrt[5]{3}\\x-y=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{1+\sqrt[5]{3}}{2}\\y=\frac{\sqrt[5]{3}-1}{2}\end{cases}}}\)

16 tháng 1 2018

Những bài còn lại chỉ cần phân tích ra rồi rút gọn là được nha. Bạn tự làm nha!

16 tháng 1 2018

Đặt \(\hept{\begin{cases}x+y=a\\x-y=b\end{cases}}\)\(\Rightarrow\)ta có hệ \(\hept{\begin{cases}2a+3b=4\\a+2b=5\end{cases}}\Rightarrow\hept{\begin{cases}a=-7\\b=6\end{cases}}\)Từ đó ta có \(\hept{\begin{cases}x+y=-7\\x-y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=-\frac{13}{2}\end{cases}}\)PS: Cái đề chỗ 3(x+y) phải thành 3(x-y) chứ

14 tháng 11 2019

1.

\(ĐK:x\ne0\)

HPT

\(\Leftrightarrow\hept{\begin{cases}2x\left(x+y\right)-3x+1=0\\3x\left(x+y\right)-x-2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3x\left(x+y\right)-\frac{9}{2}x+\frac{3}{2}=0\left(1\right)\\3x\left(x+y\right)-x-2=0\left(2\right)\end{cases}}\)

\(\left(1\right)-\left(2\right)\Leftrightarrow\frac{7}{2}x=\frac{7}{2}\)

\(\Leftrightarrow x=1\left(3\right)\)

\(\left(1\right),\left(3\right)\Rightarrow3\left(1+y\right)-3=0\)

\(\Leftrightarrow y=0\)

Vay nghiem cua HPT la \(\left(1;0\right)\)