K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2020

\(\hept{\begin{cases}ay+bx=c\\cx+az=b\\bz+cy=a\end{cases}}\)<=> \(\hept{\begin{cases}cay+cbx=c^2\\bcx+abz=b^2\\bz+cy=a\end{cases}}\)<=> \(\hept{\begin{cases}ay+bx=c\left(1\right)\\cay-abz=c^2-b^2\left(2\right)\\bz+cy=a\left(3\right)\end{cases}}\)

hệ gồm (2) và (3)  là hậ phương trình bậc nhất hai ẩn cơ bản . Em làm tiếp

5 tháng 1 2021

undefined

\(X=\left\{1;2;4;5;7\right\}\)

7 tháng 7 2019

Mình chưa học cách chứng minh mệnh đề nhưng mk chứng minh được hệ thức Vi-et:

\(ax^2+bx+c=0\)

\(\Delta=b^2-4ac\)

để phương trình có 2 nghiệm thì \(\Delta\ge0\)

\(\Rightarrow b^2-4ac\ge0\)

phương trình có 2 nghiệm là

\(x_1=\frac{-b+\sqrt{\Delta}}{2a}\)

\(x_2=\frac{-b-\sqrt{\Delta}}{2a}\)

Ta có

\(x_1+x_2=\frac{-b+\sqrt{\Delta}}{2a}+\frac{-b-\sqrt{\Delta}}{2a}\)

               \(=\frac{-2b}{2a}=-\frac{b}{a}\)

\(x_1.x_2=\frac{-b+\sqrt{\Delta}}{2a}.\frac{-b-\sqrt{\Delta}}{2a}\)

          \(=\frac{\left(-b+\sqrt{\Delta}\right).\left(-b-\sqrt{\Delta}\right)}{2a.2a}\)

           \(=\frac{b^2-\Delta}{4a^2}\)

              \(=\frac{b^2-\left(b^2-4ac\right)}{4a^2}\)

               \(=\frac{4ac}{4a^2}=\frac{c}{a}\)