Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình chưa học cách chứng minh mệnh đề nhưng mk chứng minh được hệ thức Vi-et:
\(ax^2+bx+c=0\)
\(\Delta=b^2-4ac\)
để phương trình có 2 nghiệm thì \(\Delta\ge0\)
\(\Rightarrow b^2-4ac\ge0\)
phương trình có 2 nghiệm là
\(x_1=\frac{-b+\sqrt{\Delta}}{2a}\)
\(x_2=\frac{-b-\sqrt{\Delta}}{2a}\)
Ta có
\(x_1+x_2=\frac{-b+\sqrt{\Delta}}{2a}+\frac{-b-\sqrt{\Delta}}{2a}\)
\(=\frac{-2b}{2a}=-\frac{b}{a}\)
\(x_1.x_2=\frac{-b+\sqrt{\Delta}}{2a}.\frac{-b-\sqrt{\Delta}}{2a}\)
\(=\frac{\left(-b+\sqrt{\Delta}\right).\left(-b-\sqrt{\Delta}\right)}{2a.2a}\)
\(=\frac{b^2-\Delta}{4a^2}\)
\(=\frac{b^2-\left(b^2-4ac\right)}{4a^2}\)
\(=\frac{4ac}{4a^2}=\frac{c}{a}\)
\(\hept{\begin{cases}ay+bx=c\\cx+az=b\\bz+cy=a\end{cases}}\)<=> \(\hept{\begin{cases}cay+cbx=c^2\\bcx+abz=b^2\\bz+cy=a\end{cases}}\)<=> \(\hept{\begin{cases}ay+bx=c\left(1\right)\\cay-abz=c^2-b^2\left(2\right)\\bz+cy=a\left(3\right)\end{cases}}\)
hệ gồm (2) và (3) là hậ phương trình bậc nhất hai ẩn cơ bản . Em làm tiếp