\(\text{ax}^2+bx+c=0,a\ne0\) có hai nghiệm 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2019

Mình chưa học cách chứng minh mệnh đề nhưng mk chứng minh được hệ thức Vi-et:

\(ax^2+bx+c=0\)

\(\Delta=b^2-4ac\)

để phương trình có 2 nghiệm thì \(\Delta\ge0\)

\(\Rightarrow b^2-4ac\ge0\)

phương trình có 2 nghiệm là

\(x_1=\frac{-b+\sqrt{\Delta}}{2a}\)

\(x_2=\frac{-b-\sqrt{\Delta}}{2a}\)

Ta có

\(x_1+x_2=\frac{-b+\sqrt{\Delta}}{2a}+\frac{-b-\sqrt{\Delta}}{2a}\)

               \(=\frac{-2b}{2a}=-\frac{b}{a}\)

\(x_1.x_2=\frac{-b+\sqrt{\Delta}}{2a}.\frac{-b-\sqrt{\Delta}}{2a}\)

          \(=\frac{\left(-b+\sqrt{\Delta}\right).\left(-b-\sqrt{\Delta}\right)}{2a.2a}\)

           \(=\frac{b^2-\Delta}{4a^2}\)

              \(=\frac{b^2-\left(b^2-4ac\right)}{4a^2}\)

               \(=\frac{4ac}{4a^2}=\frac{c}{a}\)

5 tháng 2 2020

key 42

TN
Thành Nam
Admin VIP
8 tháng 1 2020
Test
TN
Thành Nam
Admin VIP
8 tháng 1 2020
Tét2
4 tháng 2 2020

\(\hept{\begin{cases}x+\sqrt{y^2-x^2}=12-y\left(1\right)\\x\sqrt{y^2-x^2}=12\left(2\right)\end{cases}}\)

\(Đkxđ:y^2\ge x^2\)

Từ: \(\left(1\right)\Rightarrow x^2+2x\sqrt{y^2-x^2}+y^2-x^2=144-24y+y^2\)

\(\Leftrightarrow x\sqrt{y^2-x^2}=144-24y\left(3\right)\)

Thay: \(x\sqrt{y^2-x^2}=12\) vào \(\left(3\right)\)ta được: \(y=5\)

\(\Rightarrow\orbr{\begin{cases}x=3\\x=4\end{cases}}\Rightarrow\left\{\left(3;5\right),\left(4;5\right)\right\}\)

Ta có: \(T=3^2+4^2-5^2=0\)

Vậy giá trị cỉa biểu thức \(T=0\)

1: \(\text{Δ}=\left(-m\right)^2-4\left(m-2\right)=m^2-4m+8=\left(m-2\right)^2+4>0\)

=>Phương trình luôn có hai nghiệm phân biệt

Theo đề, ta có: m-2<0

=>m<2

2: \(\Leftrightarrow\dfrac{x_1^2+1}{x_1}\cdot\dfrac{x_2^2+1}{x_2}=9\)

\(\Leftrightarrow\dfrac{\left(x_1\cdot x_2\right)^2+\left(x_1+x_2\right)^2-2x_1x_2+1}{x_1x_2}=9\)

\(\Leftrightarrow\dfrac{\left(m-2\right)^2+\left(-m\right)^2-2\left(m-2\right)+1}{m-2}=9\)

\(\Leftrightarrow m^2-4m+4+m^2-2m+4+1=9m-18\)

\(\Leftrightarrow2m^2-6m+9-9m+18=0\)

=>2m^2-15m+27=0

hay \(m\in\varnothing\)

3: =>m=0