K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2019

Xét phương trình 1 ta có:

\(9x^3+2x+\left(y-1\right)\sqrt{1-3y}=0\)

\(\Leftrightarrow27x^3+6x+\left(3y-3\right)\sqrt{1-3y}=0\)

Đặt \(\hept{\begin{cases}3x=a\\\sqrt{1-3y}=b\end{cases}}\)

\(\Rightarrow a^3+2a-b^3-2b=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+2\right)=0\)

\(\Leftrightarrow a=b\)

Làm nốt

21 tháng 2 2019

Câu 1: ĐK: x khác -1/2, y khác -2

Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=t\) Từ phương trình thứ nhất ta có:

\(t+\frac{1}{t}=2\Leftrightarrow t^2-2t+1=0\Leftrightarrow t=1\)

=> \(\sqrt[3]{\frac{2x+1}{y+2}}=1\Leftrightarrow2x+1=y+2\Leftrightarrow2x-y=1\)

Vậy nên ta có hệ phương trình cơ bản: \(\hept{\begin{cases}2x-y=1\\4x+3y=7\end{cases}}\)Em làm tiếp nhé>

21 tháng 2 2019

\(1,ĐKXĐ:\hept{\begin{cases}y\ne-2\\x\ne-\frac{1}{2}\end{cases}}\)

Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=a\left(a\ne0\right)\)

\(Pt\left(1\right)\Leftrightarrow a+\frac{1}{a}=2\)

             \(\Leftrightarrow a^2+1=2a\)

             \(\Leftrightarrow\left(a-1\right)^2=0\)

            \(\Leftrightarrow a=1\)

           \(\Leftrightarrow\sqrt[3]{\frac{2x+1}{y+2}}=1\)

4 tháng 3 2020

a) \(\hept{\begin{cases}\sqrt{2x}-\sqrt{3y}=1\left(1\right)\\x+\sqrt{3y}=\sqrt{2}\left(2\right)\end{cases}}\) ( ĐK \(x,y\ge0\) )

Từ (1) và (2)\(\Leftrightarrow\sqrt{2x}+x=1+\sqrt{2}\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}+\sqrt{2}+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-1=0\\\sqrt{x}+\sqrt{2}+1=0\end{cases}}\)

\(\Leftrightarrow x=1\) ( Do \(x\ge0\) )

Thay \(x=1\) vào hệ (1) ta có :

\(\sqrt{2}-\sqrt{3y}=1\)

\(\Leftrightarrow\sqrt{3y}=\sqrt{2}-1\)

\(\Leftrightarrow y=\frac{3-2\sqrt{2}}{3}\) ( thỏa mãn )

P/s : E chưa học cái này nên không chắc lắm ...

4 tháng 3 2020

\(b,\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\\left(\sqrt{2}-1\right)x+\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)y=\sqrt{2}-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\\left(\sqrt{2}-1\right)x+y=\sqrt{2}-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\2y=-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=-\frac{1}{2}\\x=\frac{\sqrt{2}-0.5}{\sqrt{2}-1}=\frac{3+\sqrt{2}}{2}\end{cases}}\)

7 tháng 1 2019

i will chịu

Dùng cái đầu đi ạ

17 tháng 6 2019

ĐKXĐ: \(|x|\ge|y|,y\ne0,y\ne5.\)Ta có: 

Với \(x+\sqrt{x^2-y^2}=0\)thế vào (1) ta được \(x=0\). Khi đó thay x=0 vào (2):

\(0=\frac{5}{6\left(5-y\right)}\)(vô lí) 

\(\Rightarrow x+\sqrt{x^2-y^2}\ne0\), Ta có:

\(\hept{\begin{cases}\frac{x+\sqrt{x^2-y^2}}{x-\sqrt{x^2-y^2}}=\frac{9x}{5}\\\frac{x}{y}=\frac{5+3x}{6\left(5-y\right)}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{\left(x+\sqrt{x^2-y^2}\right)^2}{\left(x-\sqrt{x^2-y^2}\right)\left(x+\sqrt{x^2-y^2}\right)}=\frac{9x}{5}\\6x\left(5-y\right)=\left(5+3x\right)y\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{\left(x+\sqrt{x^2-y^2}\right)^2}{y^2}=\frac{9x}{5}\left(3\right)\\30x=5y+9xy\left(4\right)\end{cases}}\)

Ta thấy  Vế trái của phương trình (3) lớn hơn 0 => \(\frac{9x}{5}>0\Rightarrow x>0\)

Khi đó (4) \(\Leftrightarrow y=\frac{30x}{5+9x}>0\)

Vậy \(x,y>0\), Tiếp tục biến đổi từ (3) và (4) ta có hệ:

\(\hept{\begin{cases}\frac{x^2+2x\sqrt{x^2-y^2}+x^2-y^2}{y^2}=\frac{9x}{5}\\\left(9x+5\right)y=30x\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{2x^2}{y^2}+\frac{2x}{y}.\sqrt{\frac{x^2-y^2}{y^2}}-1=\frac{9x}{5}\\9x+5=30\frac{x}{y}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2\left(\frac{x}{y}\right)^2+2\frac{x}{y}\sqrt{\left(\frac{x}{y}\right)^2-1}=\frac{9x+5}{5}\\\frac{9x+5}{5}=6\frac{x}{y}\end{cases}}\Leftrightarrow\hept{\begin{cases}2\left(\frac{x}{y}\right)^2+2\frac{x}{y}\sqrt{\left(\frac{x}{y}\right)^2-1}=6\frac{x}{y}\left(5\right).\\9x+5=30\frac{x}{y}\left(6\right)\end{cases}}\)

Đặt \(\frac{x}{y}=a>0\)ta có;

\(\left(5\right)\Leftrightarrow2a^2+2a\sqrt{a^2-1}=6a\)\(\Leftrightarrow a^2+a\sqrt{a^2-1}-3a=0\Leftrightarrow a+\sqrt{a^2-1}-3=0\)

\(\Leftrightarrow\sqrt{a^2-1}=3-a\Leftrightarrow a^2-1=9-6a+a^2\Leftrightarrow6a=10\Leftrightarrow a=\frac{5}{3}\)

\(\Rightarrow\frac{x}{y}=\frac{5}{3}\)Thế vào (6) ta được \(9x+5=30.\frac{5}{3}\Leftrightarrow x=5\left(TMĐK\right).\)

\(\Rightarrow y=\frac{3.5}{5}=3\left(TMĐK\right).\)

Vậy hệ phương trình đã cho có nghiệm duy nhất \(\left(x;y\right)=\left(5;3\right).\)

Mong các bạn góp ý cho bài của mình để lần sau mình rút kinh nghiệm .cảm ơn

2 tháng 1 2017

Giao luu

a) \(\hept{\begin{cases}z^3+3z=y^3+3y\\\sqrt{z-2}+\sqrt{y+1}=3\end{cases}}\)  \(\left(1\right)\Leftrightarrow\orbr{\begin{cases}z=y\\\left(z^2+yz+y^2\right)+3=0\end{cases}}\)Ngủ đã mai làm tiếp

3 tháng 1 2017

không làm được bảo luôn vẽ chuyện buồn ngủ