K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2021

\(\hept{\begin{cases}8\left(x^3-1\right)+6xy^2=y\left(12x^2+y^2\right)\\\left(x^2+y-4x\right)\left(x^2+y^2-2x-5\right)=14\end{cases}}\)

Ta có:

\(8\left(x^3-1\right)+6xy^2=y\left(12x^2+y^2\right)\)

\(\Leftrightarrow8x^3-8+6xy^2=12x^2y+y^3\)

\(\Leftrightarrow8x^3+6xy^2-12x^2y-y^3=8\)

\(\Leftrightarrow\left(2x-y\right)^3=8\)

\(\Leftrightarrow2x-y=2\)

\(\Leftrightarrow y=2x-2\)

Lại có:

\(\left(x^2+y-4x\right)\left(x^2+y^2-2x-5\right)=14\)(1)

Thay \(y=2x-2\)vào (1), ta được:

\(\left(x^2+2x-2-4x\right)\left[x^2+\left(2x-2\right)^2-2x-5\right]=14\)

\(\Leftrightarrow\left(x^2-2x-2\right)\left(x^2+4x^2-8x+4-2x-5\right)=14\)

\(\Leftrightarrow\left(x^2-2x-2\right)\left(5x^2-10x-1\right)=14\)

\(\Leftrightarrow\left[\left(x-1\right)^2-3\right]\left[5\left(x-1\right)^2-6\right]=14\)

Đặt \(\left(x-1\right)^2=a\left(a\ge0\right)\), phương trình trở thành:

\(\left(a-3\right)\left(5a-6\right)=14\)

\(\Leftrightarrow5a^2-21a+18=14\)

\(5a^2-21a+4=0\)

DD
7 tháng 3 2021

\(8\left(x^3-1\right)+6xy^2=y\left(12x^2+y^2\right)\)

\(\Leftrightarrow\left(2x-y-2\right)\left(4x^2-4xy+4x+y^2-2y+4\right)=0\)

\(\Leftrightarrow2x-y-2=0\)(vì \(4x^2-4xy+4x+y^2-2y+4=\left(2x-y+1\right)^2+3>0\))

\(\Leftrightarrow y=2x-2\)thế vào phương trình bên dưới ta được: 

\(\left(x^2+2x-2-4x\right)\left(x^2+4x^2-8x+4-2x-5\right)=14\)

\(\Leftrightarrow\left(x^2-2x-2\right)\left(5x^2-10x-1\right)=14\)

Đặt \(t=x^2-2x,t\ge-1\).

Phương trình tương đương với: 

\(\left(t-2\right)\left(5t-1\right)=14\)

\(\Leftrightarrow5t^2-11t-12=0\)

\(\Leftrightarrow\orbr{\begin{cases}t=3\\t=-\frac{4}{5}\end{cases}}\)(tm).

Với \(t=3\Rightarrow x^2-2x=3\Leftrightarrow\orbr{\begin{cases}x=3\Rightarrow y=4\\x=-1\Rightarrow y=-4\end{cases}}\).

Với \(t=-\frac{4}{5}\Rightarrow x^2-2x=\frac{-4}{5}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\left(5-\sqrt{5}\right)\Rightarrow y=\frac{-2}{\sqrt{5}}\\x=\frac{1}{5}\left(5+\sqrt{5}\right)\Rightarrow y=\frac{2}{\sqrt{5}}\end{cases}}\).

22 tháng 5 2018

\(\hept{\begin{cases}2x+2y+3x-3y=4\\2x-2y+x+y=5\end{cases}}\Leftrightarrow\hept{\begin{cases}5x-y=4\\3x-y=5\end{cases}}.\)

\(2x=-1\Leftrightarrow x=\frac{-1}{2}\) " thay x = 1/2 rồi tự làm

b) 

\(\hept{\begin{cases}6xy-9x+4y-6=6xy\\4xy-20x+5y-25=4xy\end{cases}\Leftrightarrow\hept{\begin{cases}-9x+4y=6\\-20x+5y=25\end{cases}}}\)

4y 5y " chung 20 "

\(\hept{\begin{cases}-45x+20y=30\\-80x+20y=100\end{cases}}\Leftrightarrow35x=-70\Leftrightarrow x=-2\)

thay x=-2 vào pt 1 hoăc 2 rồi tự làm

22 tháng 5 2018

hệ phương trình trên bạn đặt x+y=a và x-y= b sau đó bạn giải hệ vừa đặt ẩn phụ để tìm a, b rồi bạn giải cái hệ x+y=a và x-y= b là tìm đc x và y bạn nhé!

còn hệ phương trình dưới thì bạn chỉ cần nhân vào rồi chuyển vế nó sẽ mất hạng tử chứa x.y thì nó sẽ trở thành hệ bình thường rồi bạn giải hệ đó ra sẽ tìm đc x và y nha bạn!

16 tháng 1 2018

Những bài còn lại chỉ cần phân tích ra rồi rút gọn là được nha. Bạn tự làm nha!

16 tháng 1 2018

Đặt \(\hept{\begin{cases}x+y=a\\x-y=b\end{cases}}\)\(\Rightarrow\)ta có hệ \(\hept{\begin{cases}2a+3b=4\\a+2b=5\end{cases}}\Rightarrow\hept{\begin{cases}a=-7\\b=6\end{cases}}\)Từ đó ta có \(\hept{\begin{cases}x+y=-7\\x-y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=-\frac{13}{2}\end{cases}}\)PS: Cái đề chỗ 3(x+y) phải thành 3(x-y) chứ

NV
8 tháng 3 2021

\(8x^3-12x^2y+6xy^2-y^3=8\)

\(\Leftrightarrow\left(2x-y\right)^3=8\)

\(\Leftrightarrow2x-y=2\)

\(\Rightarrow y=2x-2\)

Thế xuống pt dưới:

\(\left(x^2-2x-2\right)\left(-3x^2+6x-9\right)=14\)

Đặt \(x^2-2x=t\)

\(\Rightarrow\left(t-2\right)\left(-3t-9\right)=14\)

\(\Leftrightarrow...\)

21 tháng 2 2019

Câu 1: ĐK: x khác -1/2, y khác -2

Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=t\) Từ phương trình thứ nhất ta có:

\(t+\frac{1}{t}=2\Leftrightarrow t^2-2t+1=0\Leftrightarrow t=1\)

=> \(\sqrt[3]{\frac{2x+1}{y+2}}=1\Leftrightarrow2x+1=y+2\Leftrightarrow2x-y=1\)

Vậy nên ta có hệ phương trình cơ bản: \(\hept{\begin{cases}2x-y=1\\4x+3y=7\end{cases}}\)Em làm tiếp nhé>

21 tháng 2 2019

\(1,ĐKXĐ:\hept{\begin{cases}y\ne-2\\x\ne-\frac{1}{2}\end{cases}}\)

Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=a\left(a\ne0\right)\)

\(Pt\left(1\right)\Leftrightarrow a+\frac{1}{a}=2\)

             \(\Leftrightarrow a^2+1=2a\)

             \(\Leftrightarrow\left(a-1\right)^2=0\)

            \(\Leftrightarrow a=1\)

           \(\Leftrightarrow\sqrt[3]{\frac{2x+1}{y+2}}=1\)

31 tháng 12 2017

2)trừ từng vế của 2 pt, ta có 

\(x^2y+y^2x-4x-4y-x^2+3xy+4y^2=0\)

\(\Leftrightarrow\left(x+y\right)\left(x+4\right)\left(y-1\right)=0\) (cái này bạn tự phân tích nhá )

đến đây thì dễ rồi 

^_^

19 tháng 12 2019

1/ĐKXĐ: \(x^2+4y+8\ge0\)

PT (1) \(\Leftrightarrow\left(x-2\right)\left(x-y+3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=2\\x=y-3\end{cases}}\)

+) Với x = 2, thay vào PT (2): \(4\sqrt{y^2+4}=y\sqrt{4y+12}\) (\(\text{ĐKXĐ:}y\ge-3\))

\(\Leftrightarrow\hept{\begin{cases}y\ge0\\16\left(y^2+4\right)=y^2\left(4y+12\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}y\ge0\\4\left(y^3-y^2-16\right)=0\end{cases}}\)

\(\Rightarrow y=\frac{1}{3}\left(1+\sqrt[3]{217-12\sqrt{327}}+\sqrt[3]{217+12\sqrt{327}}\right)\)(nghiệm khổng lồ quá chả biết tính kiểu gì nên em nêu đáp án thôi:v)

Vậy...

+) Với x = y - 3, thay vào PT (2):

\(\left(y-1\right)\sqrt{y^2+4}=y\sqrt{y^2-2y+17}\)

\(\Rightarrow\left(y-1\right)^2\left(y^2+4\right)=y^2\left(y^2-2y+17\right)\)(Biến đổi hệ quả nên ta dùng dấu suy ra)

\(\Leftrightarrow4\left(1-3y\right)\left(y+1\right)=0\Leftrightarrow\orbr{\begin{cases}y=\frac{1}{3}\\y=-1\end{cases}}\)

Thử lại ta thấy chỉ có y = - 1 \(\Rightarrow x=y-3=-4\)

23 tháng 10 2019

b) HPT \(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2=2xy\left(xy+1\right)\left(1\right)\\\left(x+y\right)\left(xy+1\right)=\left(2xy\right)^2\left(2\right)\end{cases}}\)

Công theo vế 2 pt trên cho nhau: \(\left(x+y\right)^2+\left(x+y\right)\left(xy+1\right)=2xy\left(xy+1\right)+\left(2xy\right)^2\)

\(\Leftrightarrow\left(x+y-2xy\right)\left(x+y+2xy\right)+\left(xy+1\right)\left(x+y-2xy\right)=0\)

\(\Leftrightarrow\left(x+y-2xy\right)\left(x+y+3xy+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+y=2xy\\x+y+3xy+1=0\end{cases}}\)

* Với x + y = 2xy.

Thay vào (1) ta có: \(\left(2xy\right)^2=2xy\left(xy+1\right)\) 

\(\Leftrightarrow2xy\left(xy-1\right)=0\Rightarrow\orbr{\begin{cases}xy=0\\xy=1\end{cases}}\)

+) Với xy = 0 suy ra x +y = 0 => x =y = 0

+) Với xy = 1 => x +y = 2xy = 2

Theo hệ thức Viet đảo: x, y là hai nghiệm của hệ:

\(t^2-2t+1=0\Leftrightarrow t=1\Rightarrow x=y=1\)

* Với x +y + 3xy + 1 = 0.

\(\Rightarrow x+y=-\left(3xy+1\right)\)

Thay vào (1) ta thu được: \(\left(3xy+1\right)^2=2xy\left(xy+1\right)\)

\(\Leftrightarrow7x^2y^2+4xy+1=0\) . Ta có: \(7x^2y^2+4xy+1=7t^2+4t+1=7\left(t+\frac{2}{7}\right)^2+\frac{3}{7}>0\forall t=xy\)

Do đó với x +y + 3xy + 1 = 0 thì pt vô nghiệm.

=> (x;y) = {(0;0) , (1;1)}

P/s: Em mới học giải hệ thôi nên ko chắc về cách giải lẫn cách trình bày đâu nha!

23 tháng 10 2019

c) HPT \(\Leftrightarrow\hept{\begin{cases}\left(x^2+1\right)+y\left(x+y-2\right)=2y\\\left(x^2+1\right)\left(x+y-2\right)=y\end{cases}}\)

Với y = 0 thay vào pt đầu suy ra \(x^2+1=0\) (vô nghiệm)

Xét y khác 0 khi đó HPT \(\Leftrightarrow\hept{\begin{cases}\frac{\left(x^2+1\right)}{y}+\left(x+y-2\right)=2\\\frac{\left(x^2+1\right)}{y}\left(x+y-2\right)=1\end{cases}}\)

Đặt \(\frac{x^2+1}{y}=a;x+y-2=b\)

Ta có: \(\hept{\begin{cases}a+b=2\\ab=1\end{cases}}\) theo hệ thức Viet đảo: a, b là hai nghiệm của pt \(t^2-2t+1=0\Rightarrow t=1\Rightarrow a=b=1\)

Do b = 1 suy ra \(x+y-2=1\Leftrightarrow x=3-y\).

Anh thử giải nốt xem sao?Em ko chắc đâu nhá!