K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2019

Câu 1: ĐK: x khác -1/2, y khác -2

Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=t\) Từ phương trình thứ nhất ta có:

\(t+\frac{1}{t}=2\Leftrightarrow t^2-2t+1=0\Leftrightarrow t=1\)

=> \(\sqrt[3]{\frac{2x+1}{y+2}}=1\Leftrightarrow2x+1=y+2\Leftrightarrow2x-y=1\)

Vậy nên ta có hệ phương trình cơ bản: \(\hept{\begin{cases}2x-y=1\\4x+3y=7\end{cases}}\)Em làm tiếp nhé>

21 tháng 2 2019

\(1,ĐKXĐ:\hept{\begin{cases}y\ne-2\\x\ne-\frac{1}{2}\end{cases}}\)

Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=a\left(a\ne0\right)\)

\(Pt\left(1\right)\Leftrightarrow a+\frac{1}{a}=2\)

             \(\Leftrightarrow a^2+1=2a\)

             \(\Leftrightarrow\left(a-1\right)^2=0\)

            \(\Leftrightarrow a=1\)

           \(\Leftrightarrow\sqrt[3]{\frac{2x+1}{y+2}}=1\)

cho mk hỏi ai chs lazi điểm danh cái đê ~ mk hỏi thật đấy k đùa nha ~ bình luận thì mk k cho 3 cái ~

1 tháng 3 2018

\(\frac{1}{3x}+\frac{2x}{3y}=\frac{x+\sqrt{y}}{2x^2+y}\)

\(\Leftrightarrow\left(2x-\sqrt{y}\right)^2\left(x^2+x\sqrt{y}+y\right)=0\)

18 tháng 8 2020

\(\hept{\begin{cases}\frac{1}{3x}+\frac{2x}{3y}=\frac{x+\sqrt{y}}{2x^2+y}\left(1\right)\\\sqrt{y+\sqrt{y}+x+2}+\sqrt{3x+1}=5\left(2\right)\end{cases}}\)

\(ĐK:y>0;\frac{-1}{3}\le x\ne0;y+\sqrt{y}+x+2\ge0\)

Đặt \(\sqrt{y}=tx\Rightarrow y=t^2x^2\)thay vào (1), ta được: \(\frac{1}{3x}+\frac{2x}{3t^2x^2}=\frac{x+tx}{2x^2+t^2x^2}\)

Rút gọn biến x ta đưa về phương trình ẩn t : \(\left(t-2\right)^2\left(t^2+t+1\right)=0\Leftrightarrow t=2\Leftrightarrow\sqrt{y}=2x\ge0\)

Thay vào (2), ta được: \(\sqrt{4x^2+3x+2}+\sqrt{3x+1}=5\)\(\Leftrightarrow\left(\sqrt{4x^2+3x+2}-3\right)+\left(\sqrt{3x+1}-2\right)=0\)\(\Leftrightarrow\frac{\left(x-1\right)\left(4x+7\right)}{\sqrt{4x^2+3x+2}+3}+\frac{3\left(x-1\right)}{\sqrt{3x+1}+2}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{4x+7}{\sqrt{4x^2+3x+2}+3}+\frac{3}{\sqrt{3x+1}+2}\right)=0\)

Dễ thấy \(\frac{4x+7}{\sqrt{4x^2+3x+2}+3}+\frac{3}{\sqrt{3x+1}+2}>0\)nên \(x-1=0\Leftrightarrow x=1\Rightarrow y=4\)

Vậy hệ phương trình có 1 nghiệm duy nhất \(\left(x,y\right)=\left(1,4\right)\)

14 tháng 11 2017
Chịu
11 tháng 1 2022

google xin tài trợ chương trình

16 tháng 1 2022

Bó tay. com

17 tháng 1 2022
Ko biết sorry
29 tháng 12 2019

xem lại dấu ở PT thứ 2

ĐK : ...

\(\hept{\begin{cases}2+6y=\frac{x}{y}-\sqrt{x-2y}\left(1\right)\\\sqrt{x+\sqrt{x-2y}}=x+3y-2\left(2\right)\end{cases}}\)

Ta có : ( 1 ) \(\Leftrightarrow2y+6y^2=x-y\sqrt{x-2y}\Leftrightarrow x-2y-y\sqrt{x-2y}-6y^2=0\)

\(\Leftrightarrow\left(\frac{\sqrt{x-2y}}{y}\right)^2-\frac{\sqrt{x-2y}}{y}-6=0\Leftrightarrow\orbr{\begin{cases}\frac{\sqrt{x-2y}}{y}=3\\\frac{\sqrt{x-2y}}{y}=-2\end{cases}}\)

-Với \(\frac{\sqrt{x-2y}}{y}=3\Rightarrow\sqrt{x-2y}=3y\). Thay vào ( 2 ), ta có :

\(\sqrt{x+3y}=x+3y-2\Rightarrow\left(x+3y\right)-\sqrt{x+3y}-2=0\Rightarrow\orbr{\begin{cases}\sqrt{x+3y}=2\\\sqrt{x+3y}=-1\left(loai\right)\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+3y=4\\\sqrt{x-2y}=3y\end{cases}}\Leftrightarrow....\)

-Với \(\frac{\sqrt{x-2y}}{y}=-2\Rightarrow\sqrt{x-2y}=-2y\Leftrightarrow\hept{\begin{cases}\sqrt{x-2y}=x+3y-2\\\sqrt{x-2y}=-2y\end{cases}\Leftrightarrow....}\)

Vậy ....