Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(4\sqrt{8-x}+4\sqrt{8-y}+4\sqrt{8-z}\)
\(\le8-x+4+8-y+4+8-z+4\)
\(=36-x-y-z\)
\(=48-\left(x+4\right)-\left(y+4\right)-\left(z+4\right)\)
\(\le48-4\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)
\(=48-4.6=24\)
\(\Rightarrow\sqrt{8-x}+\sqrt{8-y}+\sqrt{8-z}\le6\)
Dấu = xảy ra khi \(x=y=z=4\)
bạn tham khảo nhé:
Vì \(x,y,z\ge0\)không mất tính tổng quát ta giả sử \(x\ge y\ge z\)
hệ \(\Leftrightarrow\hept{\begin{cases}3\sqrt{x}=6\\3\sqrt{8-x}=6\end{cases}\Leftrightarrow3\sqrt{x}=3\sqrt{8-x}\Leftrightarrow x=4}\)
\(\Rightarrow4\ge y\ge z\)
Nếu \(x=1\)thì \(\sqrt{8-x}=\sqrt{7}\left(L\right)\)
nếu \(x=2\)thì \(\sqrt{x}=\sqrt{2}\left(L\right)\)
\(\)nếu \(x=3\)thì \(\sqrt{x}=\sqrt{3}\left(L\right)\)
Loại vì các số vô tỉ không thẻ nào cộng lại là 1 số nguyên
Vậy \(\left(x;y;z\right)\)là \(\left(4;4;4\right)\)