Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\hept{\begin{cases}x^2+y^2-xy=1\\x+x^2y=2y^3\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2+y^2=1+xy\\x\left(1+xy\right)=2y^3\end{cases}\Rightarrow x\left(x^2+y^2\right)=2y^3}\)
\(\Leftrightarrow\left(x^3-y^3\right)+\left(xy^2-y^3\right)=0\Leftrightarrow\left(x-y\right)\left(x^2+y^2+xy\right)+y^2\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+2y^2+xy\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x^2+2y^2+xy=0\end{cases}}\)
+) \(x=y\Rightarrow\hept{\begin{cases}y^2+y^2-y^2=1\\y+y^3=2y^3\end{cases}\Rightarrow}x=y=\pm1\)
+) \(x^2+2y^2+xy=0\)Vì y=0 không là nghiệm của hệ nên ta chia 2 vế phương trình cho y2:
\(\Rightarrow\left(\frac{x}{y}\right)^2+\frac{x}{y}+2=0\)( Vô nghiệm)
Vậy hệ có nghiệm (1;1),(-1;-1).
2/ \(\hept{\begin{cases}x+y=\sqrt{x+3y}\\x^2+y^2+xy=3\end{cases}\Rightarrow\hept{\begin{cases}x^2+y^2+2xy=x+3y\\x^2+y^2+xy=3\end{cases}}}\Rightarrow xy=x+3y-3\)
\(\Leftrightarrow\left(x-xy\right)+\left(3y-3\right)\Leftrightarrow\left(x-3\right)\left(1-y\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\Rightarrow y\in\varnothing\\y=1\Rightarrow x=1\end{cases}}\)
Vậy hệ có nghiệm (1;1).
Ta có: \(\hept{\begin{cases}x^2+xy+y=1\\x+xy+y^2=1\end{cases}}\)
\(\Leftrightarrow x^2+xy+y+x+xy+y^2=2\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x+y\right)=2\)
\(\Leftrightarrow\left(x+y\right)^2+\left(x+y\right)=2\)
\(\Leftrightarrow\left(x+y\right)\left(x+y+1\right)=2\)
Sau đó xét các TH
\(hpt< =>\hept{\begin{cases}\left(x+y\right)^2+\left(x+y\right)=2\\x^2-y^2-\left(x-y\right)=0\end{cases}}< =>\hept{\begin{cases}\left(x+y\right)^2+\left(x+y\right)=2\\\left(x+y\right)\left(x-y\right)-\left(x-y\right)=0\end{cases}}\)
Đặt \(\left\{x+y;x-y\right\}\rightarrow\left\{a;b\right\}\)Suy ra \(\hept{\begin{cases}a^2+a-2=0\\ab-b=0\end{cases}< =>\hept{\begin{cases}a^2+a-2=0\\b\left(a-1\right)=0\end{cases}< =>\hept{\begin{cases}b=0\\a=1\end{cases}}}}\)
\(< =>\hept{\begin{cases}x+y=1\\x-y=0\end{cases}< =>\hept{\begin{cases}x=1-y\\1-y-y=0\end{cases}< =>\hept{\begin{cases}x=1-y\\y=\frac{1}{2}\end{cases}}< =>x=y=\frac{1}{2}}}\)
\(\hept{\begin{cases}x^2+y^2+xy=1\\x^3+y^3=x+y\end{cases}\Leftrightarrow\hept{\begin{cases}x^2+y^2-xy=1-2xy\\\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x+y\right)=0\end{cases}}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x^2-xy+y^2=1-2xy\\\left(x+y\right)\left(1-2xy-1\right)=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2-xy+y^2=1-2xy\\-2xy\left(x+y\right)=0\end{cases}}}\)
+) Xét \(-2xy=0\)\(\Leftrightarrow\)\(xy=0\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\y=0\end{cases}}\)
Mà \(x^2+y^2+xy=1\) nên x, y cùng dấu và \(x,y\ne0\)
+) Xét \(x+y=0\)\(\Leftrightarrow\)\(x=-y\)
Thay \(x=-y\) vào \(x^2+y^2+xy=1\) ta được :
\(\left(-y\right)^2+y^2-y^2=1\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}y=1\\y=-1\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}}}\)
Vậy phương trình có tập nghiệm \(\left(x,y\right)=\left\{\left(1;-1\right),\left(-1;1\right)\right\}\)
Chúc bạn học tốt ~
PS : mới lớp 8 có j sai thì thui nhé :>
Ta có: \(8-y^2=\left|xy-4\right|\ge0\Rightarrow y^2\le8\) (1)
\(x^2+2=xy\Rightarrow x^2-xy+2=0\)
\(\Leftrightarrow\left(x-\dfrac{y}{2}\right)^2-\dfrac{y^2}{4}+2=0\Leftrightarrow\dfrac{y^2}{4}-2=\left(x-\dfrac{y}{2}\right)^2\ge0\)
\(\Rightarrow y^2\ge8\) (2)
Từ (1); (2) \(\Rightarrow y^2=8\)
Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}y^2=8\\xy-4=0\\x-\dfrac{y}{2}=0\end{matrix}\right.\) \(\Leftrightarrow...\)
Dat \(x+y=t;xy=v\left(t,v\ne0\right)\)
HPT tro thanh
\(\hept{\begin{cases}t+\frac{t}{v}=\frac{9}{2}\\v+\frac{1}{v}=\frac{5}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}t+\frac{t}{v}=\frac{9}{2}\left(1\right)\\v^2-\frac{5}{2}v+1=0\left(2\right)\end{cases}}\)
Xet (2):
\(\Delta=\frac{25}{4}-4=\frac{9}{4}\)
Suy ra:
\(v_1=4;v_2=1\)
Voi \(v=4\)thi thay vao HPT thay khong thoa man nen loai
Voi \(v=1\)thay vao HPT thay khong thoa man nen loai
Vay HPT vo nghiem
mình nghxi đề là thế này mới đúng ( sai thì mình ko biết )
\(\hept{\begin{cases}x^2+xy+y^2=1\\x-y-xy=3\end{cases}}\)
bài làm
Nhận xét rằng hệ trên zốn ko đối xứng
Đặt t=-y ta đc
\(\hept{\begin{cases}x^2-tx+t^2=1\\x+t+xt=-2\end{cases}}\)
đặt
\(\hept{\begin{cases}x+t=S\\xt=P\end{cases}\left(ĐK;S^2-4P\ge0\right)}\)
hệ được chuyển zề dạng
\(\hept{\begin{cases}S^2-3P=1\\S+P=3\end{cases}=>S^2+3S-10=0=>\orbr{\begin{cases}S=-5\\S=2\end{cases}}}\)
\(=>\hept{\begin{cases}S=-5\\P=8\end{cases}\left(loại\right)hoặc\hept{\begin{cases}S=2\\P=1\end{cases}\left(nhận\right)\Leftrightarrow}\hept{\begin{cases}x+1=2\\xt=1\end{cases}}}\)
khi đó x,t là nghiệm của phương trình
\(z^2-2z+1=0=>z=1=>x=t=1=>x=1;y=-1\)
zậy có nghiemj duy nhất là (1;-1)
Đặt \(\begin{cases}S=x+y\\P=xy\end{cases}\) hpt đầu trở thành:
\(\begin{cases}S^2-P=9\\S+P=3\end{cases}\)\(\Leftrightarrow\begin{cases}S^2-P=9\\S=3-P\end{cases}\)
\(\Leftrightarrow\left(P-3\right)^2-P=9\)\(\Leftrightarrow P^2-7P+9-9=0\)
\(\Leftrightarrow P\left(P-7\right)=0\Leftrightarrow\)\(\left[\begin{array}{nghiempt}P=0\\P=7\end{array}\right.\)
Suy ra hệ đầu tương đương \(\begin{cases}x+y=3\\xy=0\end{cases}\) \(\Leftrightarrow\begin{cases}x=3\\y=0\end{cases}\) hoặc \(\begin{cases}x=0\\y=3\end{cases}\)
Suy ra hệ đầu tương đương \(\begin{cases}x+y=-4\\xy=7\end{cases}\) giải ra ta dc vô nghiệm
Vậy hệ pt trên có nghiệm (x;y) thỏa mãn là (3;0) và (0;3)
đối xứng loại 1 đặt ẩn bình lm j =))