K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2016

Trừ hai phương trình theo vế, ta được :

\(2^x+3x=2^y+3y\)

Xét hàm số : \(f\left(t\right)=2^t+3t\)

Dễ thấy f(t) đồng biến trên R

Do đó, từ \(f\left(x\right)=f\left(y\right)\) suy ra x=y. 

Thay vào phương trình thứ nhất la được :

\(2^x=3-x\)

Phương trình này có nghiệm duy nhất x=1

Vậy hệ có nghiệm duy nhất (1;1)

1 tháng 6 2016

cau a , xet phuong trinh 1 la 8(x+y) =x^2 +2y^2 + 3xy

ta co , 8(x+y) = x^2 +2xy+y^2 +y^2+xy

    8(x+y)= (x+y)^2+y(x+y)

 (x+y)((x+y)+y-8)=0  xét (x+y)=0 và (x+2y-8)=0 . xét từng trường hợp rồi thế vào phương trình 2 rồi tự giải lột nhe

1 tháng 6 2016

cau 2 de kho hieu the , viet lai xem nao sao 2 phong trinh ma bang mot bieu thuc thoi ak

30 tháng 3 2016

Lấy Logarit cơ số 2 cả 2 vế của 1 phương trình, ta có :

\(\begin{cases}x+y\log_23=2+\log_23\\x\log_23+y=1+2\log_23\end{cases}\)

Đây là hệ phương trình bậc nhất 2 ẩn x,y. Nhân cả 2 vế của phương trình thứ nhất với \(\log_23\) rồi trừ cho phương trình thứ 2, ta được

\(y\left(\log^2_23-1\right)=\log^2_23-1\)

=> y=1

Dễ dàng suy ra x=2

Vậy hệ phương trình có 1 nghiệm duy nhất là (2;1)

30 tháng 3 2016

Từ phương trình thứ nhất ta có : \(y=x-2\)

Thay vào phương trình thứ 2, ta được :

\(3^{x^2+x-2}=3^{-2}\)

Do đó

\(x^2+x-2=-2\) nên \(x=0\) hoặc \(x=-1\) 

Suy ra \(y=-2\) hoặc \(y=-3\)

Vậy hệ có 2 nghiệm là \(\left(0;-2\right)\) và \(\left(-1;-3\right)\)

30 tháng 3 2016

Đặt \(\begin{cases}u=9^{\sin x}\\v=-9^{2\cot x}\end{cases}\) (u>0, v<0)

Hệ trở thành 

\(\begin{cases}u+v=2\\u.v=-3\end{cases}\)

Khi đó u, v là nghiệm của phương trình \(t^2-2t-3=0\)

Phương trình này có 2 nghiệm t=-1 và t=3.

Vì u>0, v<0 nên v=3, v=-1

Thay lại ta được\(\begin{cases}9^{\sin y}=3\\-9^{2\cot x}=-1\end{cases}\)

\(\Leftrightarrow\begin{cases}\sin y=\frac{1}{2}\\\cot x=0\end{cases}\)

\(\begin{cases}\begin{cases}y=\frac{\pi}{6}+2k\pi\\y=\frac{5\pi}{6}+2k\pi\end{cases}\\x=\frac{\pi}{2}+l\pi\end{cases}\) (\(k,l\in Z\))

30 tháng 3 2016

Điều kiện \(x,y>0,x\ne1,y\ne1\) Hệ tương đương với 

\(\begin{cases}\frac{1}{2}\log_y\left(xy\right)=\log_xy\\2^x+2^y=3\end{cases}\) \(\Leftrightarrow\begin{cases}\log_yx+1=\frac{2}{\log_yx}\\2^x+2^y=3\end{cases}\)

Giải phương trình thú nhất ẩn \(t=\log_yx\) ta thu được \(t=1;t=-2\)

Do đó x=y hoặc \(x=\frac{1}{y^2}\)

Với x=y thế vào phương trình 2 ta thu được \(x=\log_2\frac{3}{2}\)

Với \(x=\frac{1}{y^2}\), thế vào phương trình 2 ta được :

\(2^y+2^{\frac{1}{y^2}}=3\left(y>0,y\ne1\right)\)

Phương trình này vô nghiệm, thật vậy :

+ Nếu \(y>1\) thì \(2^y>2\) và \(2^{\frac{1}{y^2}}>2^o=1\) suy ra vế trái >2=VP

+ 0<y<1 thì \(2^y>1\)và \(2^{\frac{1}{y^2}}>2^1=2\) suy ra vế trái >2=VP

Vậy hệ phương trình có nghiệm duy nhất là \(\left(\log_2\frac{3}{2};\log_2\frac{3}{2}\right)\)