K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2023

X = 96

Y= 80

Z= 48

10 tháng 10 2023

\(\left\{{}\begin{matrix}x+y+z=224\\-5x+3y+5z=0\\x-2z=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x+3y+3z=672\left(1\right)\\-5x+3y+5z=0\left(2\right)\\x-2z=0\left(3\right)\end{matrix}\right.\)

\(\left(1\right)-\left(2\right)\Leftrightarrow8x-2z=672\)

\(\Leftrightarrow4x-z=336\left(4\right)\)

\(\left(3\right);\left(4\right)\Leftrightarrow\left\{{}\begin{matrix}x-2z=0\\4x-z=336\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x-8z=0\\4x-z=336\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}7z=336\\x-2z=0\end{matrix}\right.\) 

\(\Leftrightarrow\left\{{}\begin{matrix}x=96\\z=48\end{matrix}\right.\)

\(\Rightarrow y=224-96-48=80\)

Vậy nghiệm hpt đã cho là \(\left\{{}\begin{matrix}x=96\\y=80\\z=48\end{matrix}\right.\)

NV
7 tháng 2 2021

Đề bài sai, phản ví dụ: \(x=y=\dfrac{1}{16};z=256\)

Nói chung, chỉ cần 2 biến đủ nhỏ là BĐT này đều sai

 

30 tháng 3 2017

a) \(\left\{{}\begin{matrix}x+3y+2z=8\\2x+2y+z=6\\3x+y+z=6\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=1\\z=2\end{matrix}\right.\)

b) \(\left\{{}\begin{matrix}x-3y+2z=-7\\-2x+4y+3z=8\\3x+y-z=5\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{11}{14}\\y=\dfrac{5}{2}\\z=-\dfrac{1}{7}\end{matrix}\right.\)

5 tháng 5 2017

a) Đặt \(\left\{{}\begin{matrix}x+3y+2z=8\left(1\right)\\2x+2y+z=6\left(2\right)\\3x+y+z=6\left(3\right)\end{matrix}\right.\)
Cộng \(\left(2\right)+\left(3\right)\) ta có:\(\left\{{}\begin{matrix}x+3y+2z=8\left(1\right)\\2x+2y+z=6\left(2\right)\\5x+3y+2z=12\left(4\right)\end{matrix}\right.\)
Trừ \(\left(4\right)-\left(1\right)\) ta được: \(4x=4\Leftrightarrow x=1\).
Thay vào hệ phương trình ta được:
\(\left\{{}\begin{matrix}1+3y+2z=8\\2.1+2y+z=6\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=1\\z=2\end{matrix}\right.\).
Vậy hệ phương trình có nghiệm: \(\left\{{}\begin{matrix}x=1\\y=1\\z=2\end{matrix}\right.\).

4 tháng 5 2017

b) Đặt \(\left\{{}\begin{matrix}x+y+z=7\left(1\right)\\3x-2y+2z=5\left(2\right)\\4x-y+3z=10\left(3\right)\end{matrix}\right.\)
Cộng \(\left(1\right)+\left(2\right)\) ta có: \(4x-y+3z=12\). (4)
Từ (3) và (4): \(\left\{{}\begin{matrix}4x-y+3z=12\\4x-y+3z=10\end{matrix}\right.\) (vô nghiệm).
Vậy hệ phương trình vô nghiệm.

17 tháng 5 2017

a) \(\left\{{}\begin{matrix}x+2y-3z=2\\2x+7y+z=5\\-3x+3y-2z=-7\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x+2y-3z=2\\3y+7z=1\\-32z=-4\end{matrix}\right.\)

Đáp số : \(\left(x,y,z\right)=\left(\dfrac{55}{24},\dfrac{1}{24},\dfrac{1}{8}\right)\)

b) \(\left\{{}\begin{matrix}-x-3y+4z=3\\3x+4y-2z=5\\2x+y+2z=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-x-3y+4z=3\\-5y+10z=14\\-5y+10z=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-x-3y+4z=3\\-5y+10z=14\\0y+0z=-4\end{matrix}\right.\)

Phương trình cuối vô nghiệm, suy ra hệ phương trình đã cho vô nghiệm

NV
28 tháng 3 2021

a.

\(\Leftrightarrow\left\{{}\begin{matrix}x\left(x^2+y^2\right)+\left(x^2+y^2-4\right)\left(y+2\right)=0\\x^2+y^2+\left(x+y-2\right)\left(y+2\right)=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x^2+y^2-4\right)\left(y+2\right)=-x\left(x^2+y^2\right)\\-\left(x^2+y^2\right)=\left(x+y-2\right)\left(y+2\right)\end{matrix}\right.\)

\(\Rightarrow\left(x^2+y^2-4\right)\left(y+2\right)=x\left(x+y-2\right)\left(y+2\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}y+2=0\left(\text{không thỏa mãn}\right)\\x^2+y^2-4=x\left(x+y-2\right)\end{matrix}\right.\) 

\(\Rightarrow x^2+y^2-4=x^2+x\left(y-2\right)\)

\(\Leftrightarrow\left(y+2\right)\left(y-2\right)=x\left(y-2\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}y=2\\x=y+2\end{matrix}\right.\)

Thế vào pt dưới:

\(\Rightarrow\left[{}\begin{matrix}x^2+8+2x+2x-4=0\\\left(y+2\right)^2+2y^2+y\left(y+2\right)+2\left(y+2\right)-4=0\end{matrix}\right.\)

\(\Leftrightarrow...\)

Câu b chắc chắn đề sai, nhìn 2 vế pt đầu đều có \(x^2\) thì chúng sẽ rút gọn, không ai cho đề như thế hết

28 tháng 3 2021

Mk sửa lại đề rồi. Bạn giúp mk giải vs

8 tháng 11 2018

hệ pt tương đương\(\left\{{}\begin{matrix}2x-2y+3z+2x-y-z-t=1\\-3x+4y+z+4x-2y-2z-2t=5\\x+y+z=6\\2x-y-z-t=3\end{matrix}\right.\)

\(\left\{{}\begin{matrix}2x-2y+3z+3=1\\-3x+4y+z+6=5\\x+y+z=6\\2x-y-z-t=3\end{matrix}\right.\) bây h ta xét hệ3pt 3 ẩn

\(\left\{{}\begin{matrix}-x-5y+3x+3y+3z=-2\\-4x+3y+x+y+z=-1\\x+y+z=6\end{matrix}\right.\)

\(\left\{{}\begin{matrix}-x-5y+18=-2\\-4x+3y+6=-1\\x+y+z=6\end{matrix}\right.\)

đến đây còn lại 2 pt 2 ẩn, để dành bạn đọc chứng minh nhévui

NV
14 tháng 11 2019

Lấy pt 2 trừ 2 lần pt 1:

\(3x^2-4y^3=3y^3-4x^2+7\Leftrightarrow y^3=x^2-1\)

Lấy pt 2 trừ 2 lần pt 3:

\(x^2-2y^2-4xy=3y^3+2z^2+7-4xz-4yz-4\)

\(\Leftrightarrow x^2-2y^2-4xy=3\left(x^2-1\right)+2z^2+7-4xz-4yz-4\)

\(\Leftrightarrow x^2+y^2+z^2+2xy-2yz-2zx=0\)

\(\Leftrightarrow\left(x+y-z\right)^2=0\)

\(\Leftrightarrow x+y=z\)

Hy vọng nó giúp được bạn

8 tháng 11 2019

Akai Haruma giúp em bày này với ạ banhqua