K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

tại vì cái này sẽ suy ra được là kiểu nó có góc bằng một nửa số đo cung bị chắn mà không phải là góc nội tiếp thì là góc tạo bởi tiếp tuyến và dây cung á bạn

=>OF là tiếp tuyến

P/S: Cái này là theo mình suy nghĩ thôi nha, chứ mình cũng không chắc á

2 tháng 7 2017

ABH^ = 45* và AHB^ = 90* => AHB là tam giác vuông cân 
=> AH = BH (1) 
ACH^ = 180* - A^ - B^ = 180* - 105* - 45* = 30* 
=> AH = AC/2 => AC = 2AH 
BC = CH + BH = 4 => CH = 4 - BH (2) 
(1) và (2) => CH = 4 - AH 
AC^2 = CH^2 + AH^2 
4AH^2 = (4 - AH)^2 + AH^2 
4AH^2 = 16 - 8AH^2 + AH^2 + AH^2 
<=> 2AH^2 + 8AH - 16 = 0 
<=> AH^2 + 4AH - 8 = 0 
=> AH = 2(√3 -1) 
=> AB^2 = 2AH^2 = 2.4(3 - 2√3 + 1) = 8(4 - 2√3) = 16(2 - √3) 
=> AB = 4√(2 - √3) 
AC = 2AH = 4(√3 -1)

2 tháng 7 2017

bạn nên nhớ 2 công thức sau: 

+ trong tam giác có góc A = 60độ thì ta có: BC² = AB² + AC² - AC.AB. 

+ trong tam giác có góc A = 120độ thì ta có: BC² = AB² + AC² + AC.AB. 

Giải: Kẻ đường cao BH của ∆ABC. xét tam giác ABH vuông tại H, có góc BAH = 60độ => góc ABH = 30độ => AB = 2.AH (bổ đề: trong tam giác vuông có góc = 30độ, thì cạnh đối diện với góc 30độ = nửa cạnh huyền - c/m không khó).. 

Xét ∆BHC vuông tại H => BC² = BH² + HC² = BH² + (AC - AH)² 

= BH² + AH² + AC² - 2.AH.AC 

= (BH² + AH²) + AC² - AB.AC (vì AB = 2AH) 

= AB² + AC² - AB.AC => ta đã c/m đc. công thức 1. Thay AB = 28cm và AC = 35cm vào ta tính được BC = √1029 (cm) ≈ 32,08 (cm) 

Công thức 2 thì cách chứng minh cũng khá giống, cũng kẻ đường cao từ B. Tự chứng minh nha bạn ^^

2 tháng 7 2017

ko biết

:))

k