Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{9^{15}.8^{11}}{3^{29}.16^8}=\dfrac{\left(3^2\right)^{15}.\left(2^3\right)^{11}}{3^{29}.\left(2^4\right)^8}=\dfrac{3^{30}.2^{33}}{3^{29}.2^{32}}\)
Ta lấy vễ trên chia vế dưới
\(=3.2=6\)
\(\dfrac{2^{11}.9^3}{3^5.16^2}=\dfrac{2^{11}.\left(3^2\right)^3}{3^5.\left(2^4\right)^2}=\dfrac{2^{11}.3^6}{3^5.2^8}\)
Ta lấy vế trên chia vế dưới
\(=2^3.3=24\)
\(\dfrac{9^{15}.8^{11}}{3^{29}.16^8}=\dfrac{\left(3^2\right)^{15}.\left(2^3\right)^{11}}{3^{29}.\left(2^4\right)^8}=\dfrac{3^{30}.2^{33}}{3^{29}.3^{32}}=3.2=6\)
\(\dfrac{2^{11}.9^3}{3^5.16^2}=\dfrac{2^{11}.\left(3^2\right)^3}{3^5.\left(2^4\right)^2}=\dfrac{2^{11}.3^6}{3^5.2^8}=2^3.3=8.3=24\)
a: \(=2x^2yz\cdot9x^2y^6z^2=18x^4y^7z^3\)
Bậc là 14
b: \(=-12x^2yz\cdot\dfrac{\left(-64\right)}{27}x^6y^3z^9=\dfrac{256}{9}x^8y^4z^{10}\)
bậc là 22
c: \(=5\cdot\left(-2\right)\cdot3\cdot x^2\cdot x\cdot y^2\cdot yz^3=-30x^3y^3z^3\)
Bậc là 9
d: \(=x^4y^6\cdot x^2yz=x^6y^7z\)
Bậc là 14
e: \(=-27x^6y^9\cdot\left(-x^3yz\right)\)
=27x^9y^10z
Bậc là 20
f: \(=\dfrac{-1}{6}\cdot\left(-2\right)\cdot x^2\cdot x^2y^2z\cdot x^2y^3=\dfrac{1}{3}x^6y^5z\)
Bậc là 12
g: \(=\dfrac{3}{4}\cdot\dfrac{16}{9}\cdot x^4y^5\cdot x^2y^3=\dfrac{4}{3}x^6y^8\)
Bậc là 14
h: \(=-\dfrac{1}{2}\cdot x^4y^3\cdot x^2y^3\cdot4x^2y^4z^2=-2x^8y^{10}z^2\)
Bậc là 20
I:
Câu 1: A
Câu 2: C
Câu 3: B
Câu 4: A
II:
5: S
6:S
7:Đ
8: Đ
a: Xét ΔABC có \(\widehat{ABC}=\widehat{ACB}\)
nên ΔABC cân tại A
hay AB=AC
\(=\dfrac{11}{125}-\left(\dfrac{11}{18}-\dfrac{4}{9}\right)-\left(\dfrac{5}{7}-\dfrac{17}{14}\right)\\ =\dfrac{11}{125}-\dfrac{1}{3}+\dfrac{1}{2}\\ =\dfrac{11}{125}+\dfrac{1}{6}=\dfrac{191}{750}\)
\(A=\frac{3}{11.16}+\frac{3}{16.21}+\frac{3}{21.26}+....+\frac{3}{61.66}\)
\(A=\frac{3}{5}\left[\left(\frac{1}{11}-\frac{1}{16}\right)+\left(\frac{1}{16}-\frac{1}{21}\right)+\left(\frac{1}{21}-\frac{1}{26}\right)+....+\left(\frac{1}{61}-\frac{1}{66}\right)\right]\)
\(A=\frac{3}{5}\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{61}-\frac{1}{66}\right)\)
\(A=\frac{3}{5}\left(\frac{1}{11}-\frac{1}{66}\right)\)
\(A=\frac{3}{5}.\frac{5}{66}\)
\(A=\frac{1}{22}\)